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ABSTRACT

Applying of high-energy photon beams beside all advantages obstacled by photoneutrons
that may cause extra dose to the patient that has not been considered in routine radiotherapy. The
purpose of this study is calculation of neutron and gamma doses to a female undergoing a pelvic
18 MV irradiation. A simplified Linac head model as a sphere with 10 cm radius of tungsten and with
the total spectrum of an isotropic neutron distribution was located inside a typical bunker. The
female anthropomorphic phantom was irradiated with equal weighted four-field pelvic box (18MV).
MCNPX (2.4.0) code was used to calculate of absorbed doses. The greatest effective dose, 1.04
mSv Gy-1, was calculated for the AP field while the lowest effective dose, 0.36 mSv Gy-1, was
obtained for the RL field. The Percent risk of fatal second malignancy of neutron contamination
following a 70 Gy x-ray treatment dose (with equal weights for each field, 17.5 Gy) is 0.152 %,
including 0.056 % for the AP field, 0.033 % for the PA field, 0.031 % for the RL field and 0.032 % for
the LL field. If this dose delivered only with the AP field, the risk would be 0.224 %, which is 32 %
higher than that is in case of 4-field irradiation. Our present analysis shows that this simplified
model can be used to estimating of photoneutron doses.

Key words: Photoneutron dose, The fatal secondary malignancy risk, Monte Carlo simulation.

INTRODUCTION

Background

In radiotherapy, for deep-seated tumors,
e.g. in the pelvic region, higher photon energies
such as 18 MV are widely used because of their
lower integral dose and better therapeutic gain®.
The main obstacle is the production of neutrons
through interactions of photon (>8 MV) with high

atomic number (Z) materials of accelerator structure
and the treatment room, as well as within the patient
body?®. Furthermore, gamma rays from neutron
capture reactions are also generated in both the
linac head and the patient body. The dose from these
contaminant neutrons should be considered in
patient extra-target calculation due to their high
relative biological effectiveness values (W, < 5).
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As far as we know photoneutron doses,
its related effective dose and the risk of developing
a fatal secondary malignancy due to contaminant
neutrons from female-pelvic irradiation has not
investigated yet.

Considering the limitations and
complications associated with neutron
measurement (an accuracy better than 10% can
rarely be achieved) especially in medical fields?,
the MC approach* has shown more flexibility and
capabilities in calculating dosimetric quantities
required in medical dosimetry. In the present study,
using the simplified model linac’s head validated
for photoneutrons®, the mean absorbed dose in an
organ, D, the equivalent dose in an organ, HT. and
the effective dose, E, from the neutron contaminant
have been calculated by Monte Carlo method for a
female-pelvis irradiation with 18 MV x-ray beam.
Doses from capture gamma rays and neutrons were
calculated, separately.

Objectives

The purpose of this study is the calculation
of neutron and gamma doses to chosen organs
from18 MV X-ray female pelvic irradiation and the
risk of developing a fatal secondary malignancy
due to contaminant neutrons.

Material and methods

In the current study, the general-purpose
MCNPX (2.4.0) Monte Carlo code was used to
simulate radiation transport*. The neutron doses
calculated by the f6 tally (a track-length estimator
based on the use of the restricted or total stopping
power of the particle). The ENDF/B and RMCCS
cross section data files were used. Each simulation
was performed with 10° histories as a compromise
of relative errors of results and run time.

The total spectrum of an isotropic neutron
distribution from the accelerator head can be
obtained by considering the relative contribution of
two mechanisms, evaporation contribution and
direct process, as follow:
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Where E_ is the neutron energy (in MeV), T is the
nuclear temperature of the neutrons from a
particular nucleus (in MeV), E__ is the maximum
energy of the photons (in MeV) and the constant of
7.34 denote the average binding energy of emitted
neutrons from the tungsten (in MeV) (6, 7). By
considering T= 0.5 MeV and E__ =18 MeV, the

photoneutron spectrum can be expressed as:
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Linac head can be modeled as a 10 cm
sphere of tungsten and the neutron source was
considered as an isotropic point-like source, its
spectrum given by Equation 2, located at the center
of it (5, 7-9). A variable cone aperture was defined
in the wall of tungsten sphere to provide various
field size dimensions. Full bunker walls (2.26 g cm
% concrete) and door 1.7 cm lead sandwiched
between two 20 cm thickness paraffin layers) were
simulated.

The anthropomorphic phantom was
modeled on the basis of quadratic and planar
equations according to the ORNL report (10).
Specifications for the elemental compositions of
lung (0.296 g cm °), skeletal (1.40 g cm ) and soft
tissue (1.04 g cm %) were obtained from ICRU-44
report (11). The pelvis was irradiated with four fields
(10 x10 cm?) of antero-posterior (AP, O°), postero-
anterior (PA, 180", right lateral (RL, 270°) and left
lateral (LL, 90°) in SSD (source to surface
distance)=100cm. The related doses were
calculated for each of these four field with delivering
of 17.5 Gy (from 25 fractions of 70 MU; 1 MU= 1 cGy
) to the isocenter. Furthermore, in a separate
simulation it was supposed that the total dose of 70
Gy (4 x17.5 Gy) delivered by a single field (AP) in
order to compare of our data with other’s data. As
an aid to clinical applications, the neutron source
strength (Q) value for Varian-2300 CD model (18
MV), 0.95 x 10* neutron per Gy reported by Followill
etal. (2003), was used to convert the MCNPX output
from deposited energy per incident neutron to
deposited energy per 1Gy x-ray dose at the
isocenter?.

Neutrons were transported without any
lower energy-cutoff while gamma captured photons
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were transported down to the energy of 0.01 MeV.
The total equivalent dose, HT. in each organ, T,
across the total interval energy was estimated using
the following equation:

Hy =H.(n)+H;(y) =2 We(E,)x D;(E,)+ Dr () -(3)

Where E_ is the neutron energy of the i
neutron energy interval, D, (E,) is the absorbed
dose of organ T for i"" neutron energy interval, H_(n)
is the equivalent dose of organ T from neutrons
and H (y) is the equivalent dose of organ T from

secondary photons®®. The appropriate radiation
weighting factors, W_ (E)), for neutrons
recommended by ICRP-60 report (1991)* were
derived from the following equation:

_ 2
W, = 5+17exp[@] (4

The effective dose was calculated by
multiplying the calculated total equivalent doses to
organs by the organ-weighting factor, W, as
recommended by ICRP-60 report (1991).

Table 1: The absorbed dose per unit of x-ray treatment dose (UGy Gy*) from neutrons and
gamma capture rays in the female organs for AP, PA, RL and LL projections. For each organ,
the upper number is neutrn dose and the underlined number is gamma capture rays dose.

The relative uncertainties are included in parenthesis

Organs Absorbed neutron dose & gamma capture rays (UGy Gy?)
AP PA RL LL
Ovaries 150.64 (0.01) 185.08 (<0.01) 25.8 (0.02) 26.62 (0.02)

Bone marrow

Bone surface

160.46 (0.01)
12.88 (<0.01)
122.72 (<0.01)
13.68 (<0.01)
114.30 (<0.01)

203.36 (<0.01)
12.44 (<0.01)
99.2 (<0.01)
20.66 (<0.01)

123.84 (<0.01)

Colon 24.42 (<0.01) 8.11 (0.01)
119.22 (<0.01) 50.20 (<0.01)

Lungs 3.56 (0.04) 5.12 (0.02)
28.50 (0.03) 36.62 (0.02)

Stomach wall 20.44 (<0.01) 10.26 (0.03)
174.72 (<0.01) 128.24 (<0.01)

Bladder wall 212.98 (0.01) 59.94 (0.02)
193.5 (<0.01) 168.94 (0.01)

Breasts 80.40 (<0.01) 10.41 (0.02)
64.34 (<0.01) 141.58 (0.01)

Liver 21.54 (<0.01) 5.06 (<0.01)
160.66 (<0.01) 117.54 (<0.01)

Esophagus 3.98 (0.03) 1.28 (0.04)
23.52 (0.02) 22.46 (0.02)

Thyroid 61.40 (0.02) 80.38 (0.03)
137.84 (0.03) 193.84 (0.04)
Skin 115.41 (<0.01) 113.56 (<0.01)
60.48 (<0.01) 55.28 (<0.01)

Remainder 45.25 (<0.01) 48.67 (<0.01)

76.69 (<0.01)

91.90 (<0.01)

90.50 (<0.01)
31.22 (<0.01)
56.04 (<0.01)
19.32 (<0.01)
44.18 (<0.01)
58.74 (0.02)
89.72 (<0.01)
3.06 (0.03)
23.78 (0.03)
11.58 (0.02)
47.94 (0.01)
40.38 (0.02)
92.36 (0.01)
37.62 (0.01)
28.98 (0.01)
11.84 (0.02)
73.46 (0.01)
1.92 (0.04)
23.96 (0.02)
30.54 (0.04)
70.42 (0.03)
54.12 (<0.01)
51.00 (<0.01)
7.87 (<0.01)
56.38 (<0.01)

91.38 (<0.01)
32.66 (<0.01)
57.52 (<0.01)
19.44 (<0.01)
49.54 (<0.01)
59.50 (0.02)
91.48 (<0.01)
2.66 (0.03)
29.24 (0.02)
11.44 (0.02)
82.06 (0.01)
39.52 (0.03)
98.36 (0.01)
37.88 (0.01)
31.96 (0.01)
10.02 (0.01)
60.78 (0.01)
1.76 (0.04)
23.56 (0.02)
31.44 (0.04)
70.06 (0.03)
54.80 (<0.01)
50.42 (<0.01)
9.31 (<0.01)
70.37 (<0.01)
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These risk coefficients (from NCRP-116
report) have been used as the most commonly in
calculating the risk of developing a fatal secondary
malignancy**.

RESULTS AND DISCUSSION

The calculated neutrons have a peak of 0.5
and 0.3 MeV before and after transmitted the linac
head, respectively. The average energy of
photoneutrons before and after crossing the head for
10, 15, 18, 20 MeV were 0.9, 1.08, 1.25, 1.31 MeV
and 0.46, 0.48, 0.51, 0.53 MeV respectively. These
energy ranges of neutrons have the greatest values

of radiation weighting factors?. The average
photoneutron energies after filtration through the linac
head reported were from 0.5 to 0.8 MeV for 10-18
MVx-ray beams?. The mean value of ~0.5 MeV was
repoeted by Howell et al. (2006)¢. Photoneutrons with
energies of 1-2 MeV and 0.2 to 2 MeV were reported
by NCRP-79 report before and after the filtration of
linac's head, respectively®. Readers is referred to our
pervious paper to the details of validation about our
proposed simplified model®.

The organs inside the primary beam
receive greater neutron doses (table 1). For
example, greater neutron doses received by the

Table 2: The total equivalent dose (from neutrons & gamma capture rays) per unit of x-ray
treatment dose (USv Gy in the female organs for AP, PA, RL and LL projections. The total relative
uncertainties are included in parenthesis. The numbers in each bracket correspond to neutron
and gamma capture rays relative contributions to the total equivalent doses, respectively

Organs Absorbed neutron dose & gamma capture rays (UGy Gy?)
AP PA RL LL
Ovaries 2676.91 (0.01) 3303.76 (<0.01) 280.44 (0.02) 287.35 (0.02)
[0.94, 0.06] [0.94, 0.06] [0.68, 0.32] [0.68, 0.32]
Bone marrow 263.66 (<0.01) 255.64 (<0.01) 580.58 (<0.01) 606.25 (<0.01)
[0.53, 0.47] [0.61, 0.39] [90, 10] [0.91, 0.09]
Bone surface 264.78 (<0.01) 422.72 (<0.01) 345.29 (<0.01) 352.52 (<0.01)
[0.57, 0.43] [0.71, 0.29] [0.87, 0.13] [0.86, 0.14]
Colon 510.36 (0.01) 170.69 (0.01) 910.59 (0.02) 973.62 (0.02)
[0.77, 0.23] [0.71, 0.29] [0.91, 0.09] [0.91, 0.09]
Lungs 50.57 (0.05) 93.26 (0.03) 54.94 (0.04) 56.32 (0.04)
[0.44, 0.56] [0.61, 0.39] [0.57, 0.43] [0.48, 0.52]
Stomach walll 352.60 (0.01) 206.33 (0.02) 68.57 (0.02) 102.44 (0.02)
[0.50, 0.50] [0.38, 0.62] [0.30, 0.70] [0.20, 0.80]
Bladder wall 3779.59 (0.01) 1088.54 (0.02) 675.85 (0.02) 669.42 (0.03)
[0.95, 0.05] [0.84, 0.16] [0.86, 0.14] [0.85, 0.15]
Breasts 1160.91 (0.01) 214.38 (0.02) 531.57 (0.01) 538.29 (0.01)
[0.94, 0.06] [0.34, 0.66] [0.95, 0.05] [0.94, 0.06]
Liver 353.99 (0.01) 156.12 (0.01) 167.59 (0.02) 140.44 (0.01)
[0.55, 0.45] [0.25, 0.75] [0.56, 0.44] [0.57, 0.43]
Esophagus 68.83 (0.04) 32.06 (0.04) 39.32 (0.04) 37.64 (0.04)
[0.66, 0.34] [0.30, 0.70] [0.39, 0.61] [0.37, 0.63]
Thyroid 685.72 (0.04) 885.68 (0.05) 333.06 (0.05) 340.44 (0.05)
[0.80, 0.20] [0.78, 0.22] [0.79, 0.21] [0.79, 0.21]
Skin 2083.89 (<0.01) 2053.56 (<0.01) 993.95 (<0.01)  1005.22 (<0.01)
[0.97, 0.03] [0.97, 0.03] [0.95, 0.05] [0.95, 0.05]
Remainder 827.00 (<0.01) 874.40 (<0.01) 160.70 (<0.01) 183.72 (<0.01)
[0.97, 0.03] [0.89, 0.11] [0.58, 0.42] [0.62, 0.38]




ZABIHZADEH et al., Biomed. & Pharmacol. J., Vol. 8(March Spl Edition), 65-71 (2015) 69

bladder for the AP field and ovaries for the PA filed.
However, the colon received greater dose than the
other organs in the RL and the LL field. It may due
to shielding effect of organs locating above colon
in the lateral fields. The bladder wall for the AP field
received the greatest neutron dose, 0.213 mGy Gy
. The skin absorbed a considerable neutron dose
in all fields. The deeper organs located within the
applied field received greatest photon dose (table

1). The organs far from the treatment field (exception
the thyroid) and close to the skin received lower
doses from these secondary photons. For example,
the bladder wall in the AP, RL and LL field and the
ovaries in the PA field received greater photon
doses. The greatest dose received by ovaries in
the AP field, 0.203 mGy Gy* while the smallest
gamma dose for each field delivered to the
esophagus.

Table 3: The organ equivalent dose from photoneutrons in mSv per unit photon Gy delivered to
isocenter. Our results from neutrons and gamma capture photons were reported separately. Only
contaminant neutrons produced the organ equivalent doses from Howell et al and Vanhavere et al.

Organs organ equivalent dose from photoneutrons
(m Sv per unit photon Gy delivered to isocenter)
Howell et al.2  Vanhavere et al.’ Our study
Neutron Neutron Neutrons Neutrons + Gamma
capture photons

Bladder wall 0.345 3.8 3.59 3.78
Liver 0.29 0.4 0.19 0.35
Thyroid 1.86 0.4 0.55 0.69
Skin 2.3 1.1 2.02 2.08
Stomach 0.13 0.6 0.18 0.35
Colon 0.23 2.3 0.39 0.51
Bone marrow 0.19 — 0.14 0.26
Lungs 0.07 0.2 0.02 0.05
Esophagus 0.05 0.1 0.05 0.07
Breasts 1.86 — 1.1 1.16
Remainder 0.29 — 0.68 0.83

aThe results reported by Howell et al. (2006) measured inside the Randro- Alderson phantom from the delivery of
conventional therapy for prostate treatment plans (18 MV-Varian linac) (16).
b The results of Vanhavere et al.(2004) measured inside the Plexi-phantom from 18 MV-Varian Clinac 2100 C-D (10 x

10 cm? field size), converted to mSv Gy* (17).

Table 4. Effective dose (mSv per unit photon Gy delivered to
isocenter) and percent risk of fatal secondary
malignancy due to contaminant neutrons

Field The effective dose The percent risk of fatal
(mSv Gy1) secondary malignancy (%Gy?)

AP 1.05 0.0032

PA 0.94 0.0019

RL 0.36 0.0017

LL 0.38 0.0018
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From table 2, the greatest total equivalent
dose received by the bladder wall for the AP field
(3.78 mSv Gy1), the Ovaries for the PA field (3.30
mSv Gy?) and the skin for the RL and LL fields
(0.99 mSv Gy* and 1.01 mSv Gy*). Our results for
neutron equivalent dose (only for the AP field) were
compared with others®® 7 in the table 3, however
essential differences between these studied makes
impossible a realistic comparison. The equivalent
dose of remainder organs was 0.68 mSv Gy* and
0.29 mSv Gy from Howell et al. (2006)*¢ and this
study, respectivly, or 1.1 mSv Gy* and 1.86 mSv
Gy for the breasts.

The photon contribution to the total
equivalent dose for some deeper organs has
considerable value compared to the neutron
component (table 2). For example, the contribution
of the photon dose reached up to 70 % for stomach
in the RL field and 75 % in the PA field. Therefore, it
may be crucial to calculate the gamma capture dose
(from neutron interaction) and the neutron dose
separately because of different radiation weighting
factors (W, = 1 for photon, W, < 5 for neutron).
Therefore, if the gamma capture rays not taken into
account separately it may result in underestimating
equivalent dose especially for deep-seated organs.
The greatest effective dose, 1.04 mSv Gy, was
calculated for the AP field and the Ovaries have the
maximum contribution (0.54 mSv Gy*) while the
lowest effective dose, 0.36 mSv Gy, was obtained
for the RL field and the colon has the maximum
contribution (0.12 mSv Gy?). The effective dose of
1.04 mSv Gy (for the AP field) is in good agreement
with 1.2 and 0.96 mSv Gy* measured by Vanhavere
etal. (2004)'" and Howell et al. (2006), respectively.
The effective photoneutron dose following 70 Gy

(only for the AP field) was about 0.07 Sv. Delivering
this dose with equal weighting factor from the four
field (with equal weights for each field, 17.5 Gy)
reduces the effective dose to 0.05 Sv.

The fatal secondary malignancy risk has
the minimum value for the RL field (0.0017 % Gy™)
and the maximum for the AP field (0.0032 % Gy),
see table 4. The maximum contribution of fatalities
belongs to the bladder wall in the AP field, 0.011 %
Gy.The percent risk of fatal secondary malignancy
of neutron contamination following a 70 Gy x-ray
treatment dose (with equal weights for each field,
17.5 Gy) is 0.152 %, which included 0.056 % for
the AP field, 0.033 % for the PA field, 0.031 % for
the RL field and 0.032 % for the LL field. If this dose
delivered only with the AP field the risk would be
0.224 %, which is 32 % higher than that is in form of
box irradiation.

CONCLUSION

The calculated percent risk of fatal
secondary malignancy of neutron contamination
following a prescriped dose of 70 Gy x-ray during a
typical female pelvic irradiation was 0.152 %. We
successfully built a Monte Carlo simulation model
using a simplified Linac’s head to calculate
photoneutron dose parameters that has not been
considered in routine radiotherapy.
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