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3D Prior Image Constrained Projection Completion
for X-ray CT Metal Artifact Reduction

Abolfazl Mehranian, Mohammad Reza Ay, Member, IEEE, Arman Rahmim, Senior Member, IEEE, and
Habib Zaidi, Senior Member, IEEE

Abstract—The presence of metallic implants in the body of pa-
tients undergoing X-ray computed tomography (CT) examinations
oftenresults inseverestreakingartifacts thatdegrade imagequality.
In this work, we propose a new metal artifact reduction (MAR) al-
gorithm for 2D fan-beam and 3D cone-beamCT based on the max-
imum a posteriori (MAP) completion of the projections corrupted
by metallic implants. In this algorithm, the prior knowledge ob-
tained from a tissue-classified prior image is exploited in the com-
pletion of missing projections and incorporated into a new prior
potential function. The prior is especially designed to exploit and
promote the sparsity of a residual projection (sinogram) dataset
obtained from the subtraction of the unknown target dataset from
the projection dataset of the tissue-classified prior image. TheMAP
completion is formulated as an equality-constrained convex opti-
mization and solved using an accelerated projected gradient algo-
rithm.Theperformanceof theproposedalgorithmiscomparedwith
two state-of-the-art algorithms, namely 3D triangulated linear in-
terpolation (LI) and normalized metal artifact reduction (NMAR)
algorithmusing simulated and clinical studies. The simulations tar-
geting artifact reduction in 2D fan-beam and 3D cone-beam CT
demonstrate that our algorithm can outperform its counterparts,
particularly in cone-beam CT. In the clinical datasets, the perfor-
mance of the proposed algorithm was subjectively and objectively
comparedin termsofmetalartifactreductionofasequenceof2DCT
slices. The clinical results show that the proposed algorithm effec-
tively reducesmetal artifacts without introducing new artifacts due
toerroneous interpolationandnormalizationas in thecaseofLIand
NMAR algorithms.

Index Terms—Metal artifact reduction, prior image, X-ray CT,
3D projection completion.

I. INTRODUCTION

X -RAY computed tomography (CT) has experienced con-
siderable technical advances over the past two decades

and has now emerged as a leading cross-sectional imaging
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technique for various diagnostic and therapeutic applications.
However, the appearance of streaking metal artifacts in CT im-
ages of patients bearing metallic implants can obscure crucial
diagnostic information and therefore reduce image quality and
the clinical relevance of this valuable imaging modality. As
polychromatic X-ray beams used in CT pass through a patient,
low energy (soft) X-ray photons, which are often of little
importance to image formation, are preferentially absorbed to
a greater extent than high energy photons. The outcome of this
selective absorption is that patient’s absorbed dose increases
and the X-ray beam gets richer in high energy photons and
thus becomes harder [1]. Due to this so-called beam hardening
effect, the log-processed transmission data will no longer be a
linear function of tissue thickness. In the presence of strongly
attenuating objects, such as metallic implants, beam hardening
and Compton scattering become so severe that the detectors
sensing the implants get starved of photons, and thus the rel-
evant projection data become corrupted and inconsistent. The
filtered backprojection (FBP) reconstruction algorithm, which
is widely used in CT image reconstruction, assumes a linear
or monochromatic propagation model for the detected photons
and, as such fails to consider the non-linear beam hardening
and scattering effects [2]. Consequently, the reconstructed
images exhibit cupping artifacts, declined CT numbers behind
bony structures [3] and contrast-enhanced regions [4], and
streaking artifacts around metallic objects [5]. Most current
generation commercial CT scanners, however, apply first-order
beam hardening correction (water correction) algorithms to
compensate for beam hardening, but due to the incapability
of these algorithms to calibrate the beam hardening of high-Z
materials, streaking artifacts still appear in the reconstructed
images. The dark and bright streaking artifacts can obscure
pathologic lesions and degrade the radiological manifestation
of the surrounding tissues. Consequently, since the past three
decades, extensive efforts have been directed toward devel-
oping efficient metal artifact reduction (MAR) algorithms in
order to compensate for the corrupted and missing projection
data and hence to improve the diagnostic quality and confidence
of CT imaging.
Typically, MAR algorithms comprise two steps: a) metal

trace identification, in which the projections corrupted by
metallic implants are identified and b) artifact reduction,
through which the identified missing projections are compen-
sated for or treated in such a way that the associated streaking
artifacts are mitigated. Metal traces are conventionally identi-
fied by segmentation of metallic implants in FBP reconstructed
images using thresholding [5]–[7] or clustering techniques [8],
[9] followed by reprojection of the obtained metal-only images
onto the projection or sinogram domain. Other approaches are

0018-9499 © 2013 IEEE



MEHRANIAN et al.: 3D PRIOR IMAGE CONSTRAINED PROJECTION COMPLETION FOR X-RAY CT METAL ARTIFACT REDUCTION 3319

based on segmentation of metal traces directly in raw sino-
gram data using active contours [10], curve detection [11] and
Markov random field (MRF) [12] techniques. More recently,
hybrids of these two approaches have also been proposed using
iterative metal-only image reconstruction and segmentation
[13]–[16]. The second step of MAR methods has been mainly
explored by two classes of algorithms: projection completion
and iterative image reconstruction.
Projection completion aims at interpolating the missing

projections from their neighbors through linear [5], cubic spline
[6], [17], and wavelet [18] interpolations or iterative inpainting
techniques using curvature-driven diffusion [19], [20], total
variation (TV) [10], [21], [22] and wavelet regularization [23].
Other approaches rely on replacing the missing projections with
the projections from nearby slices or opposite side angles [24],
[25]. Bal and Spies proposed to replace the missing projections
by the projections obtained from the forward projection of a
tissue-classified CT image, namely tissue-class model or prior
image [8]. The problem with this approach is that the prior
sinogram projections over missing regions (metal traces) are
not well fitted with the projections of the original sinogram
in immediate neighboring regions and hence, there is always
a risk for discontinuities and generation of new artifacts. Re-
cently, Meyer et al. [26] proposed a promising method to solve
this fitness problem. In this method, referred to as normalized
MAR (NMAR), the original sinogram is normalized by the
sinogram of prior image, thereby flattening neighboring pro-
jections. Then, the missing data are linearly interpolated and
the resulting sinogram is de-normalized. Projection completion
has also been combined with algorithms that exploit the infor-
mation hidden in low- and high-pass filtered sinograms [27]
or low- and high-pass filtered reconstructed images [28]. This
class of algorithms is often fast and computationally appealing;
however, if not efficiently implemented, these techniques might
produce new artifacts. In fact, their efficiency depends on how
robustly they can exploit the still available projection data or
even a prior knowledge in the recovery of missing data.
On the other hand, iterative reconstruction algorithms es-

tablish another class of algorithms that, unlike FBP, attempt
to frame the reconstruction problem in a way that more
closely resembles reality. In their evolution from algebraic
to model-based statistical reconstruction techniques, these
algorithms have allowed for a rich description of physical and
statistical mechanisms involved in the imaging process and also
for incorporating a priori knowledge of the images to be recon-
structed [29]. They can be adapted to missing data situations
by down-weighting [30], [31] or ignoring [13], [32], [33] the
contribution of the corrupted projections, or can be tailored to
polychromatic propagation models in order to reduce both beam
hardening and metallic artifacts [34], [35]. However, this class
of algorithms cannot entirely eradicate severe metallic artifacts
[36], hence their initiation [31], [37] and combination [38] with
projection completion techniques have also been investigated.
Despite their advantages and the development of GPU-based
and parallelizable algorithms [2], iterative image reconstruction
techniques are still memory-demanding and computationally
intensive. To reduce the computational complexity of this class
of MAR algorithms, Van Slambrouck et al. [40] proposed a

region-based iterative reconstruction method. In this method, a
fully polychromatic reconstruction model is used for metallic
regions, while a simpler monochromatic model is used for other
regions. It is worth noting that model-based iterative algorithms
have also been successfully applied for sinogram restoration
and beam hardening correction [41], [42]. Interested readers
are referred to a recent review on MAR algorithms [39].
In this study, we propose a three-dimensional (3D) projec-

tion completion MAR algorithm in a Bayesian framework for
the maximum a posteriori (MAP) completion of missing pro-
jections. In this framework, we systematically exploit the side
information obtained from a tissue-classified prior image and
also prior knowledge about the unknown projections based on
previous works in the framework of compressed sensing and
sparse signal recovery. In this context, the prior knowledge that
a target signal or solution is sparse (i.e. having many zero com-
ponents) or has a sparse and/or compressible representation in a
given transform domain is exploited to recover it from its sam-
ples or incomplete measurements. Chen et al. proposed a prior
image constrained compressed sensing technique for reducing
streaking artifacts in CT image reconstruction from undersam-
pled projection angles [43]. In this technique, the target image
is sparsified by subtraction from a prior image and then the sub-
tracted image is further sparsified using a discrete gradient op-
erator. Motivated by the concept of subtraction sparsification in
the context of compressed sensing [43], [44] and prior image
application in metal artifact reduction [8], [26], [45], we pro-
pose a new prior function to exploit i) the sparsity of a residual
sinogram obtained from the subtraction of a target sinogram and
a prior sinogram and ii) a sparsity-promoting diffusivity func-
tion defined on the prior sinogram for the recovery of missing
projections. Furthermore, we extend the proposed MAP projec-
tion completion to three dimensions in order to interpolate the
missing projections from all available projection data. The idea
of 3D interpolation has previously been studied for recovery of
missing projections in flat-panel cone beam CT [45] and in a se-
quence of 2D CT slices [46]. In the present work, we evaluate
the performance of the proposed MAR algorithm in compar-
ison with NMAR and a 3D linear interpolation algorithm imple-
mented on a triangulatedmesh grid using simulation and clinical
studies and demonstrate that our MAR approach can potentially
outperform the above state-of-the-art algorithms.

II. MATERIALS AND METHODS

A. Problem Formulation

Let denote an observed CT projection (sinogram)
dataset with projections corrupted by metallic implants over the
set , namely missing or metal-trace set. In the
recovery of the underlying uncorrupted projection dataset, , we
formulate the following forward model:

(1)

where , , is a lossy operator that removes
the projections of over the set . is the observed
dataset with removed or missing projections and represents
zero-mean Gaussian white noise with variance . The matrix
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is constructed in two steps: i) an diagonal matrix is de-
fined with zero and one diagonal values. The rows and columns
along which this matrix is zero are indexed by the set . ii) The
zero-rows of the matrix are then removed. In effect, the resulting

matrix removes the elements of over the set . In (1),
the system of equations is underdetermined and therefore has an
infinite number of solutions. In order to regulate and confine the
solution space, we follow a Bayesian estimation approach. In
this approach, one aims at finding a solution that maximizes the
a posteriori probability density of given , which according
to Bays’ rule is given by

(2)

where r.h.s densities are respectively the probability density of
given and the prior probability density of . Since the density
probability for the observation of given is the density for

, we have

(3)

where . In this framework, the unknown is
treated as a stochastic quantity with a prior probability density,

, where is Gibbs or prior energy. This
density is in fact used to impose our prior knowledge on the es-
timation. The MAP estimation is then obtained by maximizing

or equivalently minimizing the following a posteriori
energy:

(4)

In the above equation, the first termmeasures the proximity of
to if observed through , while the second term enforces the
compliance of to our prior knowledge. Generally, as the vari-
ance of noise decreases, the proximity of to increases. In
the limit where no noise is introduced as operates on (as is
the case in this work), the problem defined in (4) asymptotically
reduces to the following constrained optimization problem:

(5)

where is a constraint set inside which the linear set of equa-
tions defines the feasible set of solutions. Geometri-
cally speaking, this set appears as a hyperplane whose intersec-
tion with the ball of the prior defines the solution. Solving
(5) is in fact achieved by decreasing the prior’s energy until its
ball last touches the hyperplane.
To impose our prior knowledge about the unknown , we

employ a prior function whose gradient at point is defined
as follows:

(6)

where is a 3D derivative matrix (with symmetric
boundary conditions) that approximates the gradient using first-
order finite differences in horizontal, vertical and axial direc-
tions, is the sinogram of a tissue-classified prior image (prior

Fig. 1. Illustration of subtraction sparsification. (a)–(d) A target CT image and
its tissue-classified prior image and their corresponding sinograms, respectively.
(e) The sinogram obtained from the subtraction of the target and prior sino-
grams. (f–h) The histograms of the sinograms shown in (c)–(e) in 30 bins. The
histograms show that sinogram subtraction gives rise to the compressibility of
the target sinogram.

sinogram), , is a modified Perona-Malik diffusivity
function [47] and is a relaxation parameter to weight
the impact of the prior sinogram.
The proposed prior function exploits two types of side infor-

mation i) the diffusion directions into missing regions obtained
from the prior sinogram and ii) the sparsity or compressibility
of the subtraction sinogram. Fig. 1 further illustrates the idea
of subtraction sparsification. Figs. 1(a)–(e) show a target image
and its tissue-classified prior image, their sinograms as well as
the subtraction sinogram, respectively. In Figs. 1(f)–(h), the cor-
responding histograms of the sinograms are shown in 30 bins.
As can be seen, the subtraction gives rise to the compressibility
of the target sinogram. Therefore, the application of discrete
gradient operator can promote the sparsity of the subtrac-
tion sinogram. In (6), when tends toward zero, the problem
in (5) reduces to a constrained Tikhonov energy minimization.
In Section II-C, we will elaborate the derivation of a prior image
from an observed CT image with metal artifacts.

B. The Optimization Algorithm

To solve the problem in (5), we follow an optimization
transfer technique within the context of convex programming
[48]. In this technique, the original objective function is it-
eratively substituted by a convex, easy-to-optimize surrogate
function, which transfers its optimization to the objective
function. Let us recast the problem in (5) into the following
unconstrained problem:

(7)
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Fig. 2. A) Flowchart of the proposed algorithm. The uncorrected CT image is segmented to extract metallic implants and tissue-prior image. The sinogram of the
images are fed into the algorithm, which consists of two main steps: i) gradient descent of a subtraction sinogram, obtained by subtracting the prior sinogram and
estimated sinogram, and ii) a projection step in which the already known projections are inserted into the estimated sinogram. The corrected image is obtained by
FBP reconstruction of the estimated sinogram and then metallic implants are added back to the image. Panel B) illustrates the recovery of corrupted projections as
a function of the number of iterations (k).

where is the indicator function of the set . To obtain a
convex surrogate, we approximate the function at point

Algorithm 1 Prior Image Constrained Projection Completion

Choose: , , and ; initialize: , ,
and .1

While do,
1) .
2) .
3) .
4) .

Output: .

using second-order Taylor expansion. Thus, the resulting
surrogate reads

(8)
where is the Lipschitz constant of the gradient of the prior
function. By completing the square, dropping terms indepen-
dent of in (8) and letting , the solution then iteratively
reads

(9)

1 and are uncorrected and prior sinograms.

where is a gradient descent with step
size and is a proximal mapping associated with
the function . This algorithm is referred to as a proximal
gradient algorithm [49]. Since is an indicator function,
the proximal mapping reduces to a projection onto the convex
set (POCS) . For the constraint sets that are hyperplanes, the
POCS step is achieved by the following algebraic reconstruc-
tion technique [50]:

(10)

The above projector, in effect, inserts the already known pro-
jections from into . The Lipschitz constant plays an
important role in the convergence of gradient-based algorithms.
According to Theorem 8.3 in [50], for a fixed step size, , a gra-
dient descent algorithm converges to the minimizer of a func-
tion if . As mentioned above, as in (6),
the prior function becomes a Tikhonov function, whose Lips-
chitz constant is given by , where is
the largest eigenvalue. This implies that the constant of the
proposed functional should be larger than . Using the power
iteration method or the result presented in Appendix B in [51],
one can show that for 2D datasets and for
3D datasets. In this work, we improved the convergence rate of
the optimization algorithm using Nesterov’s acceleration [52].
To this end, Algorithm 1 summarizes the employed optimiza-
tion algorithm whereas Fig. 2 shows the flowchart of the algo-
rithm. In this algorithm, we declare the convergence of the al-
gorithm when the relative difference between and
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Fig. 3. Simulation of metal artifacts in a 2D bi-lateral hip prostheses phantom (top panel) and a 3D jaw phantom (bottom panel) based on the polychromatic
propagation of X-ray beams. In the hip phantom, an original CT image was segmented into bone, soft and normal tissues. A polychromatic data acquisition
was performed on the segmented image to obtain an artifact-free reference image. To simulate metal artifacts, two metallic implants were superimposed on the
segmented CT image and the transmission data were acquired using a polychromatic X-ray CT transmission model considering the scattering due to metallic
implants. The jaw phantom was designed for 3D cone-beam CT and consists of several spheroids representing teeth and two simulated dental fillings within a large
spheroidal soft tissue region. In this phantom, the metal artifacts were also simulated by considering a polychromatic CT model.

falls below a tolerance . In this work, we set
and in (6) for all the datasets presented

in the Results section.

C. Prior and Metal-Only Images

To obtain a tissue-classified prior image from CT images with
streaking dark and bight artifacts, Bal and Spies [8] applied
2D filtering to uncorrected CT images, tailored to reduce noise
and streaking artifacts, and classified them into air, soft tissue,
normal tissue, bone, and metal regions using K-means clus-
tering. An average CT number was then assigned to each region.
In this work, we segmented the uncorrected CT images into air,
bone, soft tissue and lung (if present in the field-of-view) using a
simple thresholding technique [26], [45]. Following tissue clas-
sification, CT numbers of air and soft tissue regions were set to
1000 and 0 HU, respectively, and the numbers of bone as well

as lung regions were kept the same as the original image because
of the inherent variability of bone and lung tissue densities and
as such the corresponding CT numbers. In the segmentation of
uncorrected CT images into different tissues, severe dark and
bright streaking artifacts can be falsely classified as air and bone
in the segmented soft tissue and bone images, respectively. Fol-
lowing the work of Karimi et al. [53] on the derivation of a prior
image, we applied a 3D close and open morphological filtering
on the segmented classes to reduce these errors. In cases with se-
vere artifacts, the residual misclassifications were interactively
reduced using a graphical user interface. As suggested by Prell
et al. [45], an alternative way would be to segment an image
pre-corrected using a linear interpolationMAR algorithm. How-
ever, in some cases, we noticed that linear interpolation and

its improved 3D triangulated version fail to effectively reduce
streaking artifacts. The segmentation of metallic implants and
thus generation of a metal-only image was performed by simple
thresholding at about 3000 HU for dental fillings and 2000 HU
for other implants. In the obtained prior image, we assigned the
CT number of soft tissue to the segmented metal implants. Fol-
lowing the generation of prior and metal-only images, a prior
sinogram as well as metal traces (missing projections) were ob-
tained by line-integral forward projections.

D. Simulation and Clinical Studies

The performance of the proposed MAR algorithm was com-
pared with 3D linear interpolation (LI) implemented on a De-
launay triangulated grid and the normalizedmetal artifact reduc-
tion (NMAR) algorithms using simulated and clinical studies.
To objectively evaluate the performance of algorithms with re-
spect to a reference CT image (i.e. without metal artifacts), we
retrospectively generated metal artifacts in artifact-free images
of two simulated phantoms i) a patient with bilateral hip pros-
theses and ii) a jaw phantom with dental fillings. These phan-
toms were designed to evaluate the performance of the algo-
rithm for both 2D fan-beam and 3D cone-beam geometries, re-
spectively. As shown in Fig. 3, the hip phantomwas constructed
by segmenting an original CT image into 3 classes, i.e. air, soft
tissue and bone plus iron prostheses. The jaw phantom was ana-
lytically modeled from several spheroids, simulating teeth with
radii ranging from 8 to 20 mm, and a large sphere simulating
the head. For this phantom, we considered two dental fillings.
To simulate beam hardening and the resulting streaking ar-

tifacts, we modeled the polychromatic propagation of X-ray
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TABLE I
SUMMARY OF CT SCANNING PARAMETERS USED IN THE CLINICAL STUDIES

beams for the bilateral hip and jaw phantoms, according to the
following model [54]:

(11)
where is the measured number of photons in projection bin
, is the number of incident photons at th energy along
projection line , is the energy-dependent attenuation
map for different tissue classes and accounts for the contri-
bution of scatters. A polyenergetic X-ray spectrum was gener-
ated using SpekCal software [55] for a tube voltage of 120 kVp,
2.5 mm aluminum filtration, 10 degrees anode angle and a tube
output of 123.8 at 1 meter. The spectrum was uni-
formly sampled for monoenergetic X-ray beams with
an intensity and average energy calculated over each energy in-
terval. For each tissue class, energy-dependent linear attenua-
tion coefficients were derived and interpolated from the NIST
XCOM photon cross section library [56]. The attenuation maps
were forward projected and then according to (11), the Poisson
noise realization of the transmission and scatter sinograms were
summed up to get a sinogram acquired under the conditions
of polychromatic propagation of X-ray beams. In this work,
we considered a constant-level scatter for non-zero projection
bins [57]. The resulting sinogram was log-processed and re-
constructed by FBP and FDK algorithms. As shown in Fig. 3,
the reconstructed artificial CT images suffer from beam hard-
ening and streaking artifacts in a similar way as in real CT ac-
quisitions. In our simulations, non-linear partial volume effect
was not modeled. Following the generation of an artificially de-
graded image, we obtained a prior image, metallic implants,
missing projections in the sinograms resulting from the poly-
chromatic propagation of X-ray beams. In addition, for each
dataset a reference image was obtained using the above-men-
tioned procedure by considering the metallic implants as bony
structures and ignoring scatter. For metal artifact reduction in
the hip phantom and clinical datasets, we evaluated the perfor-
mance of the proposed algorithm using artificial sinograms ob-
tained from the fan-beam forward projection of uncorrected CT
images.
To acquire artificial projection data under conditions closely

matching actual acquisition, we considered the fan-beam geom-
etry of a simulated single-slice CT scanner with 888 detector
channels, 984 angular samples over a 360 orbit, detector pitch
of 1 mm, 949 mm source to detector distance, 541 mm source
to iso-center distance, 408 mm iso-center to detector distance.
The geometric systemmatrix describing this scanner was gener-
ated by the Image Reconstruction Toolbox (IRT) [58], running
in MATLAB 2010a (The MathWorks, Inc., Natick, MA) on a

12-core workstation with 2.4 GHz Intel Xeon processors and
32 GB memory.
Line integrals were employed during forward projection to

obtain the Radon transform. For the evaluation of the algorithm
for the jaw phantom, we simulated a cone-beam flat-panel CT
scanner with the following specifications: a flat panel detector
with a matrix size of 384 320 and crystal size of

mm , 800 mm source to iso-center distance, 470 mm iso-
center to detector distance and 360 projection angles. The

projection dataset of the jaw phantom was obtained
using the IRT toolbox. Following the correction of the sino-
grams of the hip phantom and clinical studies, the corrected im-
ages were reconstructed using the FBP algorithmwith Ram-Lak
filter, for a resolution of 512 512 with pixel size of 0.97 mm
and a 500-mm field-of-view. The Ram-Lak filter was chosen
to best preserve the sharpness of the reconstructed images. The
corrected images of the jaw phantom were reconstructed using
the FDK algorithm with a matrix size of and
voxel size of mm . For the clinical evaluation of the
MAR algorithm, CT datasets of 8 patients were used. The data
were acquired in helical mode on the Biograph 64 True Point
PET/CT and Sensation 16 CT scanners (Siemens Healthcare,
Erlangen, Germany), equipped with 40- and 24-row detectors,
respectively. The datasets include uni- and bi-lateral hip pros-
theses, dental fillings, EEG electrodes, shoulder prosthesis and
spine fixation with pedicle screws. Table I summarizes CT scan-
ning parameters of the datasets.

E. Evaluation Metrics

The performance of the proposed algorithm was subjectively
and objectively compared with 3D linear interpolation and
NMAR algorithms. In simulation studies, the performance
of the algorithms in terms of reducing streaking artifacts was
objectively evaluated with respect to a reference using region of
interest (ROI) analysis. For this purpose, two ROIs were drawn
on uncorrected images and the normalized root mean square
difference (NRMSD) and mean absolute deviation (MAD)
between corrected images and their reference image

were calculated for each ROI as follows:

(12)

HU (13)

For quantitative evaluation of the MAR algorithms for the clin-
ical datasets, we calculated mean and standard deviation of CT
numbers in volumes of interests (VOI) defined on uncorrected
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Fig. 4. Comparison between the proposed and other MAR algorithms for the simulated bi-lateral hip prostheses dataset HU .

TABLE II
QUANTITATIVE EVALUATION OF THE MAR ALGORITHMS FOR THE SIMULATED HIP AND JAW PHANTOMS IN TERMS OF NORMALIZED ROOT MEAN SQUARE

DIFFERENCE (NRMSD) AND MEAN ABSOLUTE DEVIATION (MAD) METRICS

and corrected CT images over streaking artifacts. Owing to the
absence of a reference artifact-free image in the clinical datasets,
we defined a reference VOI on uncorrected images far from
streaking artifacts.

III. RESULTS

A. Simulation Studies

Fig. 4 compares the performance of MAR algorithms for the
simulated bilateral hip study. In this dataset, the algorithms have
noticeably reduced streaking artifacts. However, the visual com-
parison reveals that the proposed algorithm results in the pro-
duction of less new artifacts as pointed by the arrows. It should
be noted that both NMAR and the proposed algorithm depict a
similar dark streak over the bladder because both use the same
prior image. However, the proposed algorithm shows notice-
able reduction of this artifact. For the objective comparison of
the algorithms with respect to the reference image shown in
Fig. 3, two ROIs were defined on the uncorrected CT image
(see Fig. 4): one large rectangular ROI, namely ROI 1, to cap-
ture a large affected area, and one circular ROI, namely ROI 2,
for local evaluation near the implants. Table II summarizes the
NRMSD and MAD results.
In the ROI-based evaluations, the regions ofmetallic implants

were excluded from the ROIs of (un-)corrected and reference

images, since the implants are finally added back to the cor-
rected images. The results show that the proposed algorithm
achieves a better local and global performance, which is con-
sistent with the subjective evaluation.
Fig. 5 compares the performance of MAR algorithms for the

cone-beam CT study. The figure also shows the simulated ref-
erence and uncorrected images. As mentioned in Section II-D,
in the reference image, the metallic implants were replaced by
bones and the projection data were analytically acquired using
the polychromatic X-ray propagation model defined in (11). As
can be seen, the reference reconstructed images suffer from
streaking artifacts between teeth and an overall cupping arti-
fact due to beam hardening effect and the incapability of the
FDK algorithm in considering the non-linear and selective ab-
sorption of the X-ray photons. The subjective comparison of the
corrected images demonstrates that, contrary to 3D linear in-
terpolation and NMAR, the proposed 3D MAR algorithm has
remarkably reduced metallic artifacts without introducing new
artifacts. Note that the images were only corrected for metal ar-
tifacts and as such, beam hardening artifacts between teeth are
still present. In this dataset, we performed the interpolation step
of the NMAR algorithm on sinogram views of the 3D projec-
tions of the jaw phantom. A volumetric prior image was con-
structed by replacing the metallic implants of the jaw phantom
with soft tissue and its corresponding projection obtained using
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TABLE III
QUANTITATIVE EVALUATION OF THE STUDIED MAR ALGORITHMS FOR THE CLINICAL DATASETS, SHOWN ON THE TOP (T) AND BOTTOM (B) PANELS OF FIGS. 6–9,
IN TERMS OF MEAN AND STANDARD DEVIATION OF CT NUMBERS WITHIN A VOLUME OF INTEREST DRAWN ON ARTIFACTUAL REGIONS (SEE THE FIGURES) AND

ON A BACKGROUND REFERENCE REGION FAR AWAY FROM THE ARTIFACTS

Fig. 5. Comparison between the proposed and other MAR algorithms for the jaw phantom simulated for 3D cone-beam CT imaging (The display window is the
same for all images).

a monochromatic X-ray model at 80 kVp. The same prior sino-
gram was then employed for both NMAR and the proposed al-
gorithm. As shown in Fig. 5, two VOIs were defined on the
uncorrected images and the NRMSE and MAD metrics calcu-
lated. The results presented in Table II show that the proposed
algorithm also outperforms its counterparts when using objec-
tive metrics.

B. Clinical Studies

Fig. 6 compares the performance of MAR algorithms for the
clinical hip studies with uni- and bi-lateral prostheses. As sum-
marized in Table I, the patients have undergone a low-dose CT
scan for PET attenuation correction and therefore metallic im-
plants have resulted in severe dark and noisy streaking artifacts
mainly due to beam hardening and photon starvation. In the
uni-lateral hip prosthesis dataset, the studied algorithms have
noticeably reduced the artifacts; however, LI and NMAR algo-
rithms have introduced new artifacts (follow the arrows). As can
be seen, the NMAR algorithm has particularly introduced flare

at the borders and around the prosthesis, which should be at-
tributed to the propagation of interpolation errors during
(de-)normalization. While the proposed algorithm has
effectively reduced the artifacts, it has obscured the details of
the hip prosthesis in the axial direction (see sagittal view). This
is due to the fact that the projection data of the studied clin-
ical studies were obtained by stacking the 2D sinograms of a
sequence of CT slices, which might not be fully correlated in
the third dimension as in cone-beam CT. Hence, the proposed
MAR algorithm shows slightly axial detail degradation in the
displayed window setting.
For objective assessment of the algorithms, a VOI was drawn

on the area suffering from dark artifacts, as shown in the coronal
slice. Note that in this and the following figures, we only show
VOIs in one dimension. A background VOI was also defined on
a region far away from the artifacts. The mean and standard de-
viation of CT numbers of the reconstructed image over the VOIs
are summarized in Table III. The results show that the proposed
algorithm gives rise to a closer mean value to the background
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Fig. 6. Comparison between the proposed and other MAR algorithms for the clinical uni- and bi-lateral hip prostheses datasets HU .

mean value, while NMAR shows a noticeable difference with
respect to background. In the bi-lateral hip prostheses dataset
(shown in Fig. 6 bottom panel), both NMAR and the proposed
algorithm have substantially reduced the artifacts, while linear
interpolation has introduced new artifacts. The subjective eval-
uation of corrected images shows that the proposed algorithm
has reduced the artifacts without introducing bright streaks
emanating from the prosthesis (see arrow). The VOI analysis
(Table III), however shows that NMAR has more effectively re-
duced the dark streaks between the hips (over the region shown
in Fig. 6 on the coronal slice). The sizes of the projection data of
these datasets were and 99. In the recovery
of missing projections, the proposed algorithm converged, on
average, after 95 iterations with elapsed computation time of
657 seconds. In order to reduce computation time, we trimmed
the radial bins of the projection data to those passing though
the patient body. This procedure reduces the matrix size of pro-
jection datasets and therefore reduces the number of arithmetic
operations during the calculation of 3D finite differences.
Fig. 7 compares the performance of MAR algorithms for two

patients with EEG electrodes. As can be seen in these datasets,

the proposed algorithm has more effectively reduced the arti-
facts in comparison with LI and NMAR algorithms. In these
datasets for which the metallic implants are outside the skull,
we noticed that the NMAR algorithm introduces wide and se-
vere bright and dark streaking artifacts at the borders near the
electrodes, which are due to the normalization of projection bins
by small values at these regions. To practically reduce this ef-
fect, we expanded the soft tissue region of prior images for this
algorithm and also thresholded the very high-valued projections
of de-normalized sinograms to a normal value. Furthermore, to
avoid division by zero during normalization, we set zero bins
in the sinogram of the prior image to 1. Small threshold values
have been suggested byMeyer et al. [26]; however, these values
can result in highly inaccurate values in the normalized sino-
grams and hence can contribute to the appearance of severe
bright streaking artifacts in the EEG datasets.
As indicated by the arrows in Fig. 7, the improved NMAR

still give rise to new artifacts, particularly in the bottom dataset
which has more electrodes. The reduced streaks artifacts in the
regions close to the electrodes is of importance in CT-based
attenuation correction of PET data, specifically in patients with
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Fig. 7. Comparison between the proposed and other MAR algorithms for the clinical head EEG datasets HU .

epileptic foci [59]. For quantitative evaluation of the algo-
rithms, two large VOI were defined in the cranium covering
most of the streaks, as shown in Fig. 7. The results for both
datasets (Table III) demonstrate that the proposed algorithm de-
picts an improved performance over LI and NMAR algorithms
by achieving a mean CT number close to the background VOI.
These datasets had 82 and 83 slices and the proposed algorithm
converged, on average, after 194 iterations within 776 seconds.
Fig. 8 compares the performance of MAR algorithms for two
clinical head datasets with multiple dental fillings. The reduc-
tion of metallic artifacts arising from multiple dental fillings
is somewhat a challenging task, since their metal traces in the
sinogram domain are usually unified in some angles and result
in a large missing region. As can be seen in both datasets, linear
interpolation has introduced dark streaking artifacts, while
NMAR and the proposed algorithm have more effectively re-
duced the artifacts. As mentioned earlier, these two algorithms
exploit some prior information for the interpolation of missing

projections. However, the images shown in Fig. 8 show that
the NMAR algorithm depicts a flare in the lip region of the top
dataset and in the palatine region of the bottom dataset (see
arrows). Conversely, the proposed algorithm, which uses the
same image prior, does not result in such new artifacts, which
should be ascribed to error propagation during de-normaliza-
tion.
As shown in the sagittal slices shown in Fig. 8, twoVOIswere

defined in the oral cavity for objective comparison of the algo-
rithms. Consistent with the subjective observations, the results
in Table III show that the NMAR algorithm overestimates CT
numbers in comparison with the background VOI. The results
also confirm the outperformance of the proposed algorithm in
the oral cavity region. These datasets had 13 and 16 slices and
the proposed algorithm has converged, on average, after 169 It-
erations within 129 seconds.
Fig. 9 (top panel) compares the performance of MAR algo-

rithms for a clinical study with unilateral shoulder prosthesis.
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Fig. 8. Comparison between the proposed and other MAR algorithms for the clinical dental filling datasets HU .

The uncorrected images suffer from severe dark streaks radi-
ating from the implant. The results show that the algorithms
have substantially reduced the dark streaking artifacts; how-
ever, LI has introduced new bright artifacts while NMAR de-
picts some residual bright artifacts (see arrows). The perfor-
mance of the proposed algorithm is comparable with NMAR
but with reduced bright artifacts. For quantitative comparison
of the different MAR algorithms, a VOI was drawn over re-
gions affected by dark streaks (as shown in the transverse
slice) and the mean and standard deviation of CT numbers
were calculated. The results shown in Table III portray that
NMAR and the proposed algorithms achieve comparable per-
formance in terms of artifacts reduction in the selected volume
of interest. Fig. 9 (bottom panel) compares the performance
of MAR algorithms for a clinical study with spine fixation.
For this challenging case where the metallic implants are lo-
cated close together and surrounded by several bony struc-
tures, linear interpolation has limited performance. This makes
the pure interpolation of missing projections from adjacent
projections inefficient and even inaccurate. As can be seen,
both NMAR and the proposed algorithm have substantially re-
duced the dark streak artifacts; however, as can be observed in
the sagittal views, the residual dark artifacts in the image cor-
rected using the proposed algorithm are more pronounced in
front of the vertebrae in comparison with LI and NMAR. At
the same time, as shown by the black arrow, the proposed al-
gorithm shows less artifacts in the rear of the vertebrae. The

quantitative performance of the algorithms in reducing the
dark artifacts in the VOI shown on the sagittal slice reveals
that.
In this region, LI andNMARperform better. In these datasets,

the number of slices were 99 and 101 and the proposed algo-
rithm converged, on average, after 195 iterations within 996 sec-
onds.
Fig. 10 compares the performance of the evaluated algorithms

in the projection domain. The top panel shows the zoomed-in
scout and sinogram views of the bilateral hip dataset shown in
Fig. 6. Similarly, the bottom panel compares the same views of
the EEG head dataset shown in Fig. 7 (top panel). As can be
seen, the LI algorithm, implemented in a 3D triangulated grid,
cannot effectively interpolate the missing projections, partic-
ularly in the case of hip prostheses where a large number of
projections have been corrupted and the neighboring projec-
tions are not so much informative. The comparisons between
NMAR and our algorithm for the hip dataset show that both al-
gorithms have similar performance; however, as shown by the
arrow, NMAR is susceptible to the propagation of error during
linear interpolation which simply bridges the missing projec-
tions in the radial direction. The comparison of these algorithms
for the EEG dataset shows that the proposed algorithms re-
store the missing projections more accurately than NMAR. As
pointed by the arrow, the NMAR algorithm results in high-value
false projections near the electrodes, which are due to erroneous
normalization. As mentioned earlier, we substantially reduced



MEHRANIAN et al.: 3D PRIOR IMAGE CONSTRAINED PROJECTION COMPLETION FOR X-RAY CT METAL ARTIFACT REDUCTION 3329

Fig. 9 Comparison between the proposed and other MAR algorithms for the clinical shoulder and spine datasets HU .

these errors by expanding the soft tissue component of the prior
image. The inspection of the sinogram views also show that the
proposed algorithm more accurately and smoothly restores the
missing projections compared to its counterparts.

IV. DISCUSSION

Streaking artifacts arising frommetallic implants can degrade
the quality of CT images and impact the clinical relevance of
this diagnostic procedure by obscuring the radiological mani-
festation of tissues surrounding the implants. In this work, we
introduce a 3D MAR algorithm for reducing metal artifacts in
a fan-beam and cone-beam CT scanners. In this algorithm, the
recovery and completion of missing projections was formulated
as a maximum a posteriori (MAP) estimation, in which our ex-
pectations and prior knowledge about the missing projections

was imposed using a novel prior potential function. This func-
tion was developed to interpolate the missing projections from
available projection data and at the same time, to exploit prior
projection (sinogram) data obtained from the forward projec-
tion of a tissue-classified CT image. As elaborated in Section II.
A, we exploit the compressibility of a residual sinogram, ob-
tained from the subtraction of the target (unknown) and prior
sinograms, as a prior knowledge. The compressibility or spar-
sity of the residual sinogram is further promoted using discrete
gradients, which is known as a sparsifying transform, and a
modified Perona-Malik diffusivity function defined on the prior
sinogram. We compared the performance of the proposed algo-
rithm with two popular and state-of-the-art MAR algorithms,
namely a 3D linear interpolation implemented on an irregular
grid and Meyer’s NMAR algorithm using simulation and clin-
ical studies. Based on subjective and objective evaluations, it
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Fig. 10. Comparison of the scout scans and sinogram views of projection data completed by the studied MAR algorithms. Top to bottom panels: Projection data
of the bi-lateral hip prosthesis study (shown in Fig. 6, top panel) and the data of the EEG electrode study (shown in Fig. 7, top panel). As indicated by the arrows,
the proposed algorithm is not susceptible to interpolation and normalization errors of LI and NMAR algorithms.

was found that the proposed algorithm can generally outper-
form its counterparts for both 2D fan-beam and 3D cone-beam
CT imaging. In the implementation of NMAR and the proposed
algorithm, we used the same prior image obtained by the proce-
dure described in Section II-C. As demonstrated in our results,
the proposed algorithm is not susceptible to interpolation and
normalization errors encountered in the NMAR algorithm, par-
ticularly when metallic implants are at the surface of the body
as in epileptic patients presenting with EEG electrodes. How-
ever, both algorithms are susceptible to segmentation errors of
the prior image. These errors are mostly due to the classification
of dark streak artifacts as air within the soft tissue component
of the prior image. As shown in [8], these errors can reappear in
the reconstructed images. Recently, several studies focused on
accurate segmentation of different tissues from metal artifacts
in uncorrected CT images. Chen et al. [60] used non-local fil-
tering and mutual information maximized segmentation to im-
prove the performance of Bal and Spies’ method [8] for the clas-
sification of biological tissues. Karimi et al. [53] proposed to
apply close and open morphological operations on uncorrected
images in order to reduce dark and bight artifacts. This proce-
dure is then followed by a region growing segmentation guided
by a distance-dependent threshold that limits the grouping of
artifacts as anatomy. However, these approaches might fail in
cases with large or multiple closely-seated implants [53]. To
more practically reduce segmentation errors, Prell et al. [45]
suggested tissue classification on a CT image corrected by linear
interpolation. This idea has recently motivated some recent at-

tempts to iteratively improve the derivation of the prior image
[61], [62]. There are also other approaches enabling to avoid
segmentation errors and possibly to improve the accuracy of re-
covered projections by defining a prior image from statistical
anatomical atlases [63].
In the proposed prior function defined in (6), we introduced

a relaxation parameter which can be used to control the im-
pact of the prior image in the recovery of missing projections.
In cases with severe segmentation errors in the prior image,
this parameter can be set to a small value or zero, thereby the
errors are reduced or eliminated in the reconstructed image.
However, as mentioned earlier, as decreases to zero, the pro-
posed prior reduces to a Tikhonov quadratic prior. Therefore,
the performance of the algorithm degrades to that of conven-
tional MAR algorithms. The Perona-Malik diffusivity function
defined in (6) includes the contrast parameter , which controls
the amount of edge-enhancement. Since CT projection data are
usually smooth, we set in this work for all used
datasets and found that this value is fairly small in order to guide
the completion ofmissing projections. Generally, smaller values
of have a negative impact on the convergence of the employed
projected gradient algorithm. Nevertheless, we improved the
convergence rate and thus the computation time of the optimiza-
tion algorithm using Nesterov’s acceleration, as formulated in
Algorithm 1. In terms of computation time, our results show that
the 3D linear interpolation on a triangulated mesh and NMAR
are the most time-consuming and fastest MAR algorithms, re-
spectively. In a dataset having size of , the
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elapsed computation times are about 1630 and 25 seconds, re-
spectively, on our MATLAB-based implementations. Note that
since the 3D LI algorithm is memory demanding for such a
dataset, it was implemented for every 10 slices. For the clin-
ical studies used in this work, the performance of the various
MAR algorithms was evaluated using artificial projection data
obtained from the forward projection of uncorrected images,
whereas for simulation studies, the algorithms were evaluated
on the original projection data. Joemai et al. reported that the
correction of corrupted projections on original scanner-specific
raw data is more effective than corrections performed on artifi-
cial data [64]. However, we followed the latter generic method
for the clinical studies while considering the geometry of a re-
alistic fan-beam CT scanner and put more emphasis on the de-
velopment of a newMAR algorithm that reduces metal artifacts
as efficiently as or better than current state-of-the-art MAR al-
gorithms.

V. CONCLUSION

In this study, a 3D MAR algorithm was proposed in the
maximum a posteriori completion of missing projections in a
sequence of 2D CT slices and 3D cone-beam CT. In this algo-
rithm, we exploited side information about missing projections,
obtained from a tissue-classified prior CT image using a novel
prior potential function. The prior was designed to exploit and
promote the sparsity of a residual projection dataset (sinogram)
obtained from the subtraction of the unknown target dataset
from the projection dataset of the tissue-classified prior image.
The formulated MAP problem was casted as a constrained op-
timization problem and solved using an accelerated projected
gradient algorithm. The proposed algorithm was compared with
two state-of-the-art algorithms using simulation and clinical
studies. In 2D fan-beam and 3D cone-beam simulations, it
was demonstrated that the proposed 3D algorithm outperforms
its counterparts, particularly in cone-beam CT. In the clinical
studies, the performance of the evaluated MAR algorithms was
evaluated using artificial sinograms of a sequence of 2D CT
slices. It was found that the proposed algorithm effectively
reduces metal artifacts without introducing new ones owing to
more accurate utilization of prior information in comparison
with its state-of-the-art counterparts. Future work will focus on
the application of the proposed MAR algorithm in clinical 3D
cone beam CT imaging.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation under grant SNSF 31003A-135576, the Indo-Swiss
Joint Research Programme ISJRP 138866, and Geneva Univer-
sity Hospital under grant PRD 11-II-1.

REFERENCES
[1] W. R. Hendee and E. R. Ritenour, Medical Imaging Physics, 4th ed.

Hoboken, NJ, USA: Wiley, 2002.
[2] X. Pan, E. Y. Sidky, andM.Vannier, “Why do commercial CT scanners

still employ traditional, filtered back-projection for image reconstruc-
tion?,” Inv. Probl., vol. 25, no. 12, p. 1230009, 2009.

[3] G. T. Herman, “Demonstration of beam hardening correction in com-
puted tomography of the head,” J. Comput. Assist. Tomogr., vol. 3, no.
3, pp. 373–378, 1979.

[4] K. Kitagawa, R. T. George, A. Arbab-Zadeh, J. A. Lima, and A. C.
Lardo, “Characterization and correction of beam-hardening artifacts
during dynamic volume CT assessment of myocardial perfusion,” Ra-
diology, vol. 256, no. 1, pp. 111–118, 2010.

[5] W. A. Kalender, R. Hebel, and J. Ebersberger, “Reduction of CT ar-
tifacts caused by metallic implants,” Radiology, vol. 164, no. 2, pp.
576–7, 1987.

[6] M. Bazalova, L. Beaulieu, S. Palefsky, and F. Verhaegen, “Correction
of CT artifacts and its influence on Monte Carlo dose calculations,”
Med. Phys., vol. 34, pp. 2119–2132, 2007.

[7] M. Abdoli, J. R. de Jong, J. Pruim, R. A. J. O. Dierckx, and H. Zaidi,
“Reduction of artefacts caused by hip implants in CT-based attenua-
tion-corrected PET images using 2-D interpolation of a virtual sino-
gram on an irregular grid,” Eur. J. Nucl. Med. Mol. Imag., vol. 38, pp.
2257–2268, 2011.

[8] M. Bal and L. Spies, “Metal artifact reduction in CT using tissue-class
modeling and adaptive prefiltering,” Med. Phys., vol. 33, no. 8, pp.
2852–2859, 2006.

[9] H. Yu, K. Zeng, D. K. Bharkhada, G. Wang, M. T. Madsen, O. Saba, B.
Policeni, M. A. Howard, andW. R. K. Smoker, “A segmentation-based
method for metal artifact reduction,” Acad. Radiol., vol. 14, no. 4, pp.
495–504, 2007.

[10] H. Xue, L. Zhang, Y. Xiao, Z. Chen, and Y. Xing, “Metal artifact reduc-
tion in dual energy CT by sinogram segmentation based on active con-
tour model and TV inpainting,” in Proc. IEEE Nuclear Science Symp.
Conf. Rec., 2009, pp. 904–908.

[11] C. Xu, F. Verhaegen, D. Laurendeau, S. A. Enger, and L. Beaulieu,
“An algorithm for efficient metal artifact reductions in permanent seed
implants,” Med. Phys., vol. 38, no. 1, pp. 47–56, 2011.

[12] W. J. H. Veldkamp, R. M. S. Joemai, A. J. van der Molen, and J.
Geleijns, “Development and validation of segmentation and interpo-
lation techniques in sinograms for metal artifact suppression in CT,”
Med. Phys., vol. 37, no. 2, pp. 620–628, 2010.

[13] X. Zhang, J. Wang, and L. Xing, “Metal artifact reduction in X-ray
computed tomography (CT) by constrained optimization,”Med. Phys.,
vol. 38, no. 2, pp. 701–711, 2011.

[14] B. Meng, J. Wang, and L. Xing, “Sinogram preprocessing and binary
reconstruction for determination of the shape and location of metal ob-
jects in computed tomography (CT),” Med. Phys., vol. 37, no. 11, pp.
5867–5875, 2010.

[15] J. Choi, K. S. Kim, M. W. Kim, W. Seong, and J. C. Ye, “Sparsity
driven metal part reconstruction for artifact removal in dental CT,” J.
X-ray Sci. Tech., vol. 19, pp. 457–475, 2011.

[16] M. Meilinger, E. W. Lang, C. Schmidgunst, and O. Schutz, “Projec-
tive segmentation of metal implants in Cone Beam computed tomo-
graphic images,” in Proc. 7th Int. Symp. Image and Signal Processing
and Analysis, Dubrovnik, 2011, pp. 507–512.

[17] M. Abdoli, M. R. Ay, A. Ahmadian, R. Dierckx, and H. Zaidi, “Re-
duction of dental filling metallic artefacts in CT-based attenuation cor-
rection of PET data using weighted virtual sinograms optimized by a
genetic algorithm,” Med. Phys., vol. 37, pp. 6166–6177, 2010.

[18] S. Zhao, D. Robertson, G. Wang, and B. Whiting, “X-ray CT metal
artifact reduction using wavelets: An application for imaging total hip
prostheses,” IEEE Trans. Med. Imag., vol. 19, pt. 12, pp. 1238–1247,
Dec. 2000.

[19] J. Gu, L. Zhang, G. Yu, Y. Xing, and Z. Chen, “X-ray CTmetal artifacts
reduction through curvature based sinogram inpainting,” J. X-ray Sci.
Tech., vol. 14, no. 2, pp. 73–82, 2006.

[20] Y. Zhang, Y. F. Pu, J. R. Hu, Y. Liu, Q. L. Chen, and J. L. Zhou, “Ef-
ficient CT metal artifact reduction based on fractional-order curvature
diffusion,” Comput. Math. Meth. Med., p. 173748, 2011.

[21] X. Duan, L. Zhang, Y. Xiao, J. Cheng, Z. Chen, and Y. Xing, “Metal
artifact reduction in CT images by sinogram TV inpainting,” in Proc.
IEEE Nuclear Science Symp. Conf. Rec., 2008, pp. 4175–4177.

[22] Y. Zhang, Y. F. Pu, J. R. Hu, Y. Liu, and J. L. Zhou, “A new
CT metal artifacts reduction algorithm based on fractional-order
sinogram inpainting,” J. X-ray Sci. Tech., vol. 19, no. 3, pp.
373–384, 2011.

[23] A. Mehranian, M. R. Ay, A. Rahmim, and H. Zaidi, “X-ray CT metal
artifact reduction using wavelet domain sparse regularization.,” IEEE
Trans Med Imag., to be published.

[24] M. Yazdi, M. A. Lari, G. Bernier, and L. Beaulieu, “An opposite view
data replacement approach for reducing artifacts due to metallic dental
objects,” Med. Phys., vol. 38, no. 4, pp. 2275–2281, 2011.

[25] S. Tohnak, M. A. J, M. Mahoney, and S. Crozier, “Dental CT metal
artefact reduction based on sequential substitution,” Dentomaxillofac.
Radiol., vol. 40, no. 3, pp. 184–190, 2011.



3332 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 5, OCTOBER 2013

[26] E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß, “Nor-
malized metal artifact reduction (NMAR) in Computed Tomography,”
Med. Phys., vol. 37, pp. 5482–5493, 2010.

[27] K. Y. Jeong and J. B. Ra, “Metal artifact reduction based on sinogram
correction in CT,” in Proc. IEEE Nuclear Science Symp. Conf. Rec.,
2009, pp. 3480–3483.

[28] E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelriess, “Fre-
quency split metal artifact reduction (FSMAR) in computed tomog-
raphy,” Med. Phys., vol. 39, no. 4, pp. 1904–1916, 2012.

[29] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and
Recent Advances, 2nd ed. Bellingham, WA: SPIE, 2009.

[30] J. Nuyts and S. Stroobants, “Reduction of attenuation correction arti-
facts in PET-CT,” in Proc. IEEE Nuclear Science Symp. Conf. Rec.,
2005, pp. 1895–1899.

[31] M. Oehler and T. M. Buzug, “Statistical image reconstruction for in-
consistent CT projection data,” Meth. Inf. Med., vol. 46, pp. 261–269,
2007.

[32] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Re-
duction of metal streak artifacts in X-ray computed tomography using
a transmission maximum a posteriori algorithm,” IEEE Trans. Nucl.
Sci., vol. 47, no. 3, pp. 977–981, Jun. 2000.

[33] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß, “Improved
total variation-based CT image reconstruction applied to clinical data,”
Phys. Med. Biol., vol. 56, pp. 1545–1561, 2011.

[34] G. Van Gompel, K. Van Slambrouck, M. Defrise, K. J. Batenburg, J. de
Mey, J. Sijbers, and J. Nuyts, “Iterative correction of beam hardening
artifacts in CT,” Med. Phys., vol. 38, p. S36, 2011.

[35] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “An it-
erative maximum-likelihood polychromatic algorithm for CT,” IEEE
Trans. Med. Imag., vol. 20, no. 10, pp. 999–1008, Oct. 2001.

[36] J. F. Williamson, B. R. Whiting, J. Benac, R. J. Murphy, G. J. Blaine, J.
A. O’Sullivan, D. G. Politte, and D. L. Snyder, “Prospects for quanti-
tative computed tomography imaging in the presence of foreign metal
bodies using statistical image reconstruction,”Med. Phys., vol. 29, no.
10, pp. 2404–2418, 2002.

[37] H. Xue, L. Zhang, Y. Xing, and Z. Chen, “An iterative reconstruction
technique for metal artifact reduction,” in Proc. 11th Int. Meet. Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, 2011, pp. 199–202.

[38] C. Lemmens, D. Faul, and J. Nuyts, “Suppression of metal artifacts in
CT using a reconstruction procedure that combines MAP and projec-
tion completion,” IEEE Trans. Med. Imag., vol. 28, no. 2, pp. 250–260,
Feb. 2009.

[39] M. Abdoli, R. A. Dierckx, and H. Zaidi, “Metal artifact reduction
strategies for improved attenuation correction in hybrid PET/CT
imaging,” Med. Phys., vol. 39, no. 6, pp. 3343–3360, 2012.

[40] K. Van Slambrouck and J. Nuyts, “Metal artifact reduction in computed
tomography using local models in an image block-iterative scheme,”
Med. Phys., vol. 39, no. 11, pp. 7080–93, 2012.

[41] J. La Riviere, J. Bian, and P. A. Vargas, “Penalized-likelihood sinogram
restoration for computed tomography,” IEEE Trans. Med. Imag., vol.
25, no. 8, pp. 1022–1036, Aug. 2006.

[42] G. V. Gompel, K. V. Slambrouck, M. Defrise, K. J. Batenburg, J. D.
Mey, J. Sijbers, and J. Nuyts, “Iterative correction of beam hardening
artifacts in CT,” Med. Phys., vol. 38, no. S1, pp. S36–S49, 2011.

[43] G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed
sensing (PICCS): A method to accurately reconstruct dynamic CT im-
ages from highly undersampled projection data sets,” Med. Phys., vol.
35, no. 2, pp. 660–3, 2008.

[44] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Bara-
niuk, and R. Chellappa, “Compressive sensing for background subtrac-
tion,” in Proc. 10th Eur. Conf. Computer Vision: Part II, Marseille,
France, 2008, pp. 155–168.

[45] D. Prell, Y. Kyriakou, M. Beister, and W. A. Kalender, “A novel for-
ward projection-based metal artifact reduction method for flat-detector
computed tomography,” Phys. Med. Biol., vol. 54, no. 21, p. 6575,
2009.

[46] B. Kratz, I. Weyers, and T. M. Buzug, “A fully 3D approach for metal
artifact reduction in computed tomography,” Med. Phys., vol. 39, no.
11, pp. 7042–7054, 2012.

[47] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
12, no. 7, pp. 629–639, Jul. 1990.

[48] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using sur-
rogate objective functions,” J. Comput. Graph. Statist., vol. 9, pp. 1–20,
2000.

[49] A. Beck and M. Teboulle, “Gradient-Based Algorithms with Applica-
tions in Signal Recovery Problems,” in Convex Optimization in Signal
Processing and Communications, D. Palomar and Y. Eldar, Eds.
Cambribge, U.K.: Cambribge Univ. Press, 2010, pp. 33–88.

[50] E. P. Chong and S. H. Zak, An Introduction to Optimization, 2nd ed.
Hoboken, NJ, USA: Wiley, 2001.

[51] J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, “Algorithms
and software for total variation image reconstruction via first-order
methods,” Numer. Alg., vol. 53, pp. 67–92, 2010.

[52] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[53] S. Karimi, P. Cosman, C. Wald, and H. Martz, “Segmentation of arti-
facts and anatomy in CT metal artifact reduction,”Med. Phys., vol. 39,
no. 10, pp. 5857–68, 2012.

[54] P. J. La Rivière, “Penalized-likelihood sinogram smoothing for low-
dose CT,” Med. Phys., vol. 32, no. 6, pp. 1676–1683, 2005.

[55] G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Ver-
haegen, “SpekCalc: A program to calculate photon spectra from tung-
sten anode X-ray tubes,” Phys. Med. Biol., vol. 54, no. 19, p. N433,
2009.

[56] M. J. Berger and J. H. Hubbell, “XCOM: Photon cross sections on a
personal computer,” Center for Radiation Research, National Bureau
of Standards, 1987.

[57] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal
streak artifacts in X-ray computed tomography: A simulation study,” in
Proc. IEEE Nuclear Science Symp. Conf. Rec., 1998, pp. 1860–1865.

[58] J. Fessler, Image Reconstruction Toolbox, Univ. Michigan [Online].
Available: http://www.eecs.umich.edu/~fessler/code/index.html, Ac-
cessed 2012

[59] C. Lemmens, M.-L. Montandon, J. Nuyts, O. Ratib, P. Dupont, and
H. Zaidi, “Impact of metal artefacts due to EEG electrodes in brain
PET/CT imaging,” Phys. Med. Biol., vol. 53, no. 16, pp. 4417–4429,
2008.

[60] Y. Chen, Y. Li, H. Guo, Y. Hu, L. Luo, X.Yin, J. Gu, and C. Toumoulin,
“CT metal artifact reduction method based on image segmentation and
sinogram in-painting,” Math. Prob. Eng., vol. 2012, 2012, Article ID
786281, 18 pages.

[61] F. Morsbach, S. Bickelhaupt, G. A. Wanner, A. Krauss, B. Schmidt,
and H. Alkadhi, “Reduction of metal artifacts from hip prostheses on
CT images of the pelvis: Value of iterative reconstructions,”Radiology,
2013, in press.

[62] Y. Zhang, H. Yan, X. Jia, J. Yang, S. B. Jiang, and X. Mou, “A hybrid
metal artifact reduction algorithm for X-ray CT,” Med. Phys., vol. 40,
no. 4, pp. 041910–17, 2013.

[63] O. Sadowsky, L. Junghoon, E. G. Sutter, S. J. Wall, J. L. Prince, and
R. H. Taylor, “Hybrid cone-beam tomographic reconstruction: Incor-
poration of prior anatomical models to compensate for missing data,”
IEEE Trans. Med. Imag., vol. 30, no. 1, pp. 69–83, Jan. 2011.

[64] R. M. S. Joemai, P. W. D. Bruin, W. J. H. Veldkamp, and J. Geleijns,
“Metal artifact reduction for CT: Development, implementation, and
clinical comparison of a generic and a scanner-specific technique,”
Med. Phys., vol. 39, no. 2, pp. 1125–1132, 2012.




