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Purpose: Compressed sensing (CS) provides a promising framework for MR image reconstruction from
highly undersampled data, thus reducing data acquisition time. In this context, sparsity-promoting
regularization techniques exploit the prior knowledge that MR images are sparse or compressible in a
given transform domain. In this work, a new regularization technique was introduced by iterative
linearization of the non-convex smoothly clipped absolute deviation (SCAD) norm with the aim of
reducing the sampling rate even lower than it is required by the conventional [; norm while approaching
an lp norm.
Materials and Methods: The CS-MR image reconstruction was formulated as an equality-constrained
optimization problem using a variable splitting technique and solved using an augmented Lagrangian (AL)
method developed to accelerate the optimization of constrained problems. The performance of the
resulting SCAD-based algorithm was evaluated for discrete gradients and wavelet sparsifying transforms
and compared with its [;-based counterpart using phantom and clinical studies. The k-spaces of the
datasets were retrospectively undersampled using different sampling trajectories. In the AL framework, the
CS-MRI problem was decomposed into two simpler sub-problems, wherein the linearization of the SCAD
norm resulted in an adaptively weighted soft thresholding rule with a sparsity enhancing effect.
Results: It was demonstrated that the proposed regularization technique adaptively assigns lower weights
on the thresholding of gradient fields and wavelet coefficients, and as such, is more efficient in reducing
aliasing artifacts arising from k-space undersampling, when compared to its /;-based counterpart.
Conclusion: The SCAD regularization improves the performance of [1-based regularization technique,
especially at reduced sampling rates, and thus might be a good candidate for some applications in CS-MRI.
Published by Elsevier Inc.

1. Introduction

acquisition time. Fast data acquisition is of particular importance for
capturing temporal changes over whole organs in a short time.

Magnetic resonance imaging (MRI) is one of the leading cross-
sectional imaging modalities in clinical practice offering a great
flexibility in representing the anato-functional characteristics of
organs and soft tissues. However, MRI often suffers from long data
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Beside ultra-fast imaging sequences [1], emerging trends focus on
partial Fourier [2] and parallel MRI (pMRI) [3,4], which are based on
the undersampling of k-space and estimation of missing data using
the redundant information available in the acquired data or prior
knowledge about the underlying image.

One of the issues of the data acquisition techniques employing k-
space undersampling is reduced signal to noise ratio (SNR), since
SNR is directly proportional to the number of phase-encoding steps
or the amount of acquired data. Furthermore, at high undersampling
rates or acceleration factors, the reconstructed images can exhibit
residual aliasing artifacts that further degrade image quality. The
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reduced SNR and residual artifacts, in fact, arise from the ill-
conditioning of the inverse problems encountered in this context [5].
Regularization and explicit incorporation of prior knowledge during
reconstruction of MR images are efficient ways to improve the
conditioning of the problem and thus to penalize unsatisfactory and
noisy solutions. Several regularization schemes have been assessed
in this context. Tikhonov regularization suppresses noise and
artifacts by favoring smooth image solutions [6-8].The truncated
singular value decomposition attempts to reduce noise by truncating
small singular values on the assumption that noise amplification is
associated with small singular values of solution [6,9]. Both
regularizations are based on [, norm minimization and tend to blur
the details and edges in the estimated image [6,10]. Recent
developments in compressed sensing have introduced sparsity
regularization techniques, which have garnered significant attention
in MR reconstruction from highly undersampled k-spaces. In fact, CS-
MRI reduces noise and aliasing artifacts by exploiting the prior
knowledge that MR images are sparse or weakly sparse (compress-
ible) in spatial and/or temporal domains [11,12], in a given
transform domain such as wavelets, Fourier, discrete gradients
[11,13] or in learned dictionaries [14,15]. By establishing a direct link
between sampling and sparsity, CS theory provides an alternative
sampling criterion to conventional Shannon-Nyquist theory [16,17].
According to this theory, it is possible to accurately recover the
underlying signal or solution from the data acquired at sampling
rates far below the Nyquist limit as long as i) it is sparse or has a
sparse representation in a given transform domain and ii) the
sampling pattern is random or such that the aliasing artifacts are
incoherent (noisy-like) in that domain [17,18].

Sparsity regularization aims at finding a solution that has the
sparsest representation in a given sparse transform domain. In this
regard, the lo norm is an ideal regularizer (or prior), which counts the
number of non-zero elements of the solution [19]. However, this
non-convex prior results in an intractable and non-deterministic
polynomial-time hard (NP-hard) optimization problem. For this
reason, the I; norm has been widely used as a convex surrogate to
the lp norm and has gained popularity in conjunction with wavelet
[20,21] and discrete gradient transforms [22]. The latter is known as
total variation (TV) regularization [23-26] and has been shown to
outperform l-based regularizations in CS-(p)MRI [27,28]. The ;-
based regularizations; however, show a lower limit in the required
sampling rate and hence in the maximum achievable acceleration
rate [29]. In addition, the /; norm is known to be biased due to over-
penalizing large sparse representation coefficients [30]. To further
reduce the sampling rate and approach [y norm minimization,
Candes et al. [30] proposed a reweighted [; norm minimization in
which the sparsity induced by the [; norm is enhanced by the
weighting factors that are derived from the current estimate of the
underlying solution. This approach has been successfully applied in
CS-(p)MRI [31-33]. Furthermore, non-convex priors homotopically
approximating the Iy norm have also been studied showing the
improved performance of the resulting regularization techniques in
the recovery of strictly sparse signals [19,34,35]. However, MR
images are usually compressible rather than sparse, hence it is
desirable to exploit the sparsity-promoting properties of both [; and
lo norm minimizations [36]. To improve the properties of [; and
pseudo lp norms in terms of unbiasedness, continuity and sparsity,
Fan and Li [37] proposed a non-convex prior called smoothly clipped
absolute deviation (SCAD) norm in the context of statistical variable
selection. This norm has been designed to not excessively penalize
large valued coefficients as in the I; norm and at the same time
approaching an [y norm. Teixeira et al. [38] have previously studied
the SCAD regularization for sparse signal recovery using a second-
order cone optimization method. In this work, we employed, for the
first time, the SCAD regularization with discrete gradients and

wavelet transforms in the context of CS-MRI and solved the resulting
problem using variable splitting and augmented Lagrangian (AL)
methods. In the AL framework, the optimization problem is reduced
to simpler sub-problems, leading to an improved convergence rate in
comparison with state-of-the-art and general purpose optimization
algorithms [39,40]. In this framework, the linearization of the SCAD
norm resulted in a weighted soft thresholding rule that exploits the
redundant information in image space to adaptively threshold the
gradient fields and wavelet coefficients and to effectively reduce
aliasing artifacts. In this study, we compared the performance of the
proposed SCAD-based regularization with the conventional [;-based
approach using simulation and clinical studies, where k-spaces were
retrospectively undersampled using different sampling patterns to
demonstrate the potential application of the proposed method in CS-
MR image reconstruction.

2. Materials and methods
2.1. Theory

For a single-coil CS-MRI, we formulate the following CS
acquisition model:

y=®rx+n 1)

where yeCV is the undersampled k-space of the underlying MR
image, x=R", contaminated with additive noise neC. FeCV > Nis a
Fourier basis through which x is being sensed and ®<RM * VN is a
sampling matrix that compresses data to M < N samples. The matrix
A = ®F is often referred to as sensing or Fourier encoding matrix.
The direct reconstruction of ¥ from y (by zero-filling the missing data
and then taking its inverse Fourier transform) results in aliasing
artifacts, which is attributed to the ill-conditioning of matrix A. As a
result, regularization is required to regulate the solution space
according to a prior knowledge. The solution can therefore be
obtained by the following optimization problem:

Q= argimxlllcbfx—yllz +R(x) 2]

where the first term enforces data consistency and the second one,
known as regularizer, enforces data regularity. In the CS-MRI context,
sparse [;-based regularizers have been widely used because the [,
norm is a convex and sparsity promoting norm, thereby the resulting
problem is amenable to optimization using convex programming.
These regularizers are of the form R(x) = M[¥x|l; = A > M 1|[¥x]i,
where N\ > 0 is a regularization parameter controlling the balance
between regularization and data-consistency and ¥ is a sparsifying
transform such as discrete wavelet, Fourier or gradient transform.
The CS approach makes it possible to accurately reconstruct the
image solution of problem (1), provided that i) the underlying image
has a sparse representation in the domain of the transform ¥, i.e.
most of the decomposition coefficients are zero, while few of them
have a large magnitude, ii) the sensing matrix A should be sufficiently
incoherent with the sparse transform ¥, thereby the aliasing artifacts
arising from k-space undersampling would be incoherent (noise like)
in the domain of ¥ [11,18].

2.2. Proposed method
The sparsity or compressibility of an image solution induced by [

based regularizers can be increased by introducing a non-convex
potential function, ¥, as follows:

R(x) = g v (11xl;]) E]
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where i, assigns a higher penalty on the coefficients of small
magnitude, therefore, they are being shrunk towards zero. In this
study, the non-convex SCAD potential function is applied for CS-MRI
regularization. The SCAD function, which has been widely and
successfully used for linear regression with variable selection [37], is
defined as:

M- , HESN
vt = { (—16° + 2aNH—N?) 22— 1)\ (t[<an 4
(1+a)N\2/2 [thaN

where a > 2. This potential function corresponds to a quadratic
spline with knots at N\ and aN. Based on simulations and some
Bayesian statistical arguments, Fan and Li [37] suggested a = 3.7.

In this study, 3D discrete gradient and 2D wavelet transforms
were employed as sparsifying transforms. For discrete gradient, we
define ¥ = [¥" ¥¥ ¥ = R3N*N which is composed of directional
first-order finite difference matrices (horizontal, vertical and
axial) with periodic boundary conditions. By convention, we
define the magnitude of the gradient at voxel i by [¥, ¥x];,=
¢ {\Ifhx}iz + [®'x)? + [¥°x)?, [¥x,cR®. The summation over the
magnitude of the gradient at all voxels in Eq. (3) defines an isotropic
TV regularizer, which is known to be edge-preserving in image
processing and sparsity-promoting in compressed sensing. However,
this is known to sometimes result in stair-casing artifacts, which are
artificial flat regions in the image domain. For wavelet transforms,
we make use of Daubechies 7/9 biorthogonal (D7/9) wavelets, with
four resolution levels in a normalized tight (Parseval) frame of
translation-invariant wavelets, implemented by undecimated dis-
crete wavelet transforms (UDWT) and a lifting scheme. In UDWT, the
decimation (downsampling) is eliminated in favor of invariance to
the shifts of an input image, thus avoiding the star-like artifacts
usually induced by the standard decimated wavelet transform. Note
that in the case of a tight frame, WR?*N which is called
decomposition or forward wavelet transform, satisfies ¥7 ¥=I,
where ¥ is reconstruction or inverse wavelet transform and I is the
identity matrix.

To solve the problem defined in Eq. (2) using SCAD-based
regularizer, we follow the augmented Lagrangian (AL) method,
which has been originally developed for constrained optimization
problems [41]. The AL method, also known as the method of
multipliers [42], allows for the optimization of non-continuously
differentiable regularizers through a variable splitting technique, in
which auxiliary constraint variables are defined and the original
optimization problem is decomposed to simpler sub-problems [39].
Hence, we define the auxiliary variable 8 = ¥x and cast the problem
(2), with the regularizer defined by Egs. (3) and (4), into the
following constrained problem:

min

A1 2 : 3
X0 {l"(x, 0)25llerx—yll" + Z;)\(|ei|)}, subject to @ = ¥x. 5]

e
The augmented Lagrangian for this problem is defined as:
T P 2
L(x,6,y) =TI(x,0)—y (6—¥x)+ > ||6—Lx|". (6]

where y= R3N and p > 0 are respectively the Lagrange multipliers
and the penalty parameter associated with the equality constraint
6 = ¥x. The AL method aims at finding a saddle point (x*, 6™)
minimizing £(x,0,y). The classical approach to solve Eq. (6)

alternates between a joint-minimization and an update step
as follows:

<Xk+1 7 0k+1) — argminx,o£<x7 0, ‘Yk>' !
Y yk_p(alm _‘lekﬂ) 8]

As joint-minimization in Eq. (7) is not trivial, an alternating
minimization with respect to a given variable while fixing the other
one can be followed. Using this approach, referred to as alternating
direction method of multipliers (ADMM) [43], the optimization
algorithm of Eq. (7) reads:

.1 :
K argmmx{jnéfx—yll —v (gk_q:x) +§Hok_\1;x\\2} 9]

N
0! = argming{z¢k(|6i|)—yi (x—w*1) + g 10— x"! 2}. [10]
i=1

Recently, Ramani et al. [40] studied the ADMM method for pMRI
and demonstrated its outperformance over nonlinear conjugate
gradient algorithms. In this work, we followed this method and
derived solutions for the involved sub-problems as follows.

2.2.1. Minimization with respect to x

The minimization in Eq. (9) is achieved by taking the derivative of
the objective of the problem with respect to ¥ and equating it to zero,
thereby one arrives at the following normal equations:

(fH'I'TQF n p\I:T\I/)x"“ —Fla'y 1 o' (pok—yk). [11]

where ()" denotes the Hermitian transpose and ®'®cRN * VN is a
diagonal matrix with zeros and ones on the diagonal entries. To solve
this problem, one needs to invert the matrix G 2 Fl®'®dF + peTy,

In the case of discrete gradients with periodic boundary
conditions, the matrix w<R3N *N as a block-circulant structure
and its directional derivatives can be achieved by circular convolu-
tions with two-element kernels. Therefore, ¥ can be efficiently
diagonalized using 3D discrete Fourier transform (DFT) [44], i.e.
¥ = FHAF, where A is a diagonal complex matrix containing the
DFT coefficients of the convolution kernels of ¥. Hence, one obtains
v = FH|A|2F, where |A]> € RN * N is the modulus of A, also the
eigenvalue matrix of ¥TW. With this diagonalization, the solution of
problem (9) is given by:

X1 :.7__H((1>Tq>+p|A2|)—1‘7_-(]__H<I)Ty+‘I,T(pok_,yk>)v 12]

It should be noted that in the case of non-Cartesian MR data, the
Fourier encoding matrix ® F is not diagonalizable using discrete
Fourier transform. However, the solution can be obtained by
regridding of data to Cartesian k-space or the use of iterative
techniques such as the conjugate gradient algorithm for estimating
the inverse of G. Recently, Akcakaya et al. [45] proposed another
approach to approximate the matrix ®'®, which is not diagonal
in the case of non-Cartesian data acquisition, by a diagonal
matrix which gives an approximate closed-form solution to this
sub-problem.

In the case of wavelet frames, the inversion of matrix G can
be obtained by Sherman-Morrison-Woodbury matrix inversion
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formula and exploiting the fact that ¥'¥ dPT =1,

as follows:

-1 (l—fH<I>T (qin + pl)_ltﬁ]-') e peTe ) 13
p P T+p
By doing some algebra and knowing that F#" = I, one can show
that the solution of Eq. (11) for wavelet transforms reads:

ki1 T gk 1 k> 1 _H.T Tk 1 &k
XM= (0 -y ) —Fe [y—aFe [0°—— . (14
( oY Tp (y ( o7 (14]

2.2.2. Minimization with respect to 0

The SCAD potential function is non-convex; thereby the problem
(10) might have multiple local minima. The minimization of non-
convex problems often depends on the initial estimate and the
choice of the optimization algorithm. Global search techniques, such
as simulated annealing, can guarantee convergence to a global
minimizer but they are impractical for routine use in image
reconstruction. Hence, one can utilize an optimization transfer
technique to iteratively surrogate the non-convex function by a
convex function, which is amenable to optimization. Fan and Li [37]
proposed a local quadratic approximation to the SCAD function near
the point 6f as follows:

"1k
1 o (lel])
Q1o 10f1) = v (1081) + 37— b
(1 tof1) = i (o) 2165 (j6,2—105P) ”
where the first derivative of the SCAD function is given by:
, AN [0;] <N
"’A“"f')—{max(O,ax—w,-D/(a—l) 6N 1

The quadratic surrogate in Eq. (15) is, however, undefined at
points 0¥ = 0. The denominator can be conditioned to 6% + &,
where ¢ is a predefined perturbation parameter [46]. Since an ¢
erroneous potentially degrades the sparsity of t