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Abstract—X-ray computed tomography (CT) imaging of pa-
tients with metallic implants usually suffers from streaking metal
artifacts. In this paper, we propose a new projection completion
metal artifact reduction (MAR) algorithm by formulating the
completion of missing projections as a regularized inverse problem
in the wavelet domain. The Douglas–Rachford splitting (DRS)
algorithm was used to iteratively solve the problem. Two types of
prior information were exploited in the algorithm: 1) the sparsity
of the wavelet coefficients of CT sinograms in a dictionary of
translation-invariant wavelets and 2) the detail wavelet coeffi-
cients of a prior sinogram obtained from the forward projection of
a segmented CT image. A pseudo- synthesis prior was utilized
to exploit and promote the sparsity of wavelet coefficients. The
proposed -DRS MAR algorithm was compared with standard
linear interpolation and the normalized metal artifact reduction
(NMAR) approach proposed by Meyer et al. using both simulated
and clinical studies including hip prostheses, dental fillings, spine
fixation and electroencephalogram electrodes in brain imaging.
The qualitative and quantitative evaluations showed that our
algorithm substantially suppresses streaking artifacts and can
outperform both linear interpolation and NMAR algorithms.

Index Terms—Metal artifact reduction (MAR), streaking arti-
facts, wavelets, X-ray computed tomography (CT), sparse reg-
ularization.

I. INTRODUCTION

T HE NONLINEAR absorption of polychromatic X-ray
beams used in X-ray computed tomography (CT) often

results in beam hardening and the selective absorption of
X-ray photons [1]. In the presence of strongly attenuating
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objects such as metallic implants, beam hardening and scat-
tering is usually so strong that the detectors sensing the
implants experience severe photon starvation and thus the
relevant log-processed projection data become corrupted and
inconsistent [2], [3]. Consequently, the data inconsistency
appears as dark and bright streaking artifacts during image
reconstruction, which can obscure crucial diagnostic informa-
tion in tissues surrounding the implants [4]–[6]. Moreover,
as shown in [7], nonlinear partial volume effects and noise
can also give rise to data corruption and hence streaking
artifacts. Over the years, the prevalence of CT imaging in
clinical practice and the need for improved image quality in
patients bearing metallic implants have spurred continuous
efforts towards the development of metal artifact reduction
(MAR) algorithms to compensate for corrupted and missing
projections, thus mitigating metal artifacts. MAR algorithms
fall into two classes: projection completion and iterative image
reconstruction algorithms.
In the projection completion approach, which is often fol-

lowed by filtered-back-projection (FBP) image reconstruction,
the missing projections are synthesized from neighboring
projections using linear and polynomial interpolation [4],
[8]–[10], wavelet interpolation [11], adaptive filtering [12],
[13], and inpainting [14]–[17] techniques. Other approaches
aim at replacing the missing projections with those available
in opposite view angles or adjacent CT slices [18]–[20]
or the projections obtained from forward projection of
tissue-segmented CT images [21]–[24]. The efficiency of
these algorithms in the recovery of missing projections hinges
on how robustly they can exploit the available projection
data or utilize a priori information about missing projections.
In fact, if not appropriately developed, these methods might
induce new artifacts. Recently, Meyer et al. [25] proposed a
very promising projection-based normalized MAR (NMAR)
algorithm to facilitate the interpolation of missing projections
without introducing new severe artifacts. In this algorithm, the
original sinogram is first normalized by a sinogram obtained
from a tissue-segmented CT image, called prior image, and
then the missing data are linearly interpolated. Finally, the
resulting sinogram is denormalized. In general, projection
completion algorithms should be preceded by a metal trace
identification step, in which projections running through
metallic implants (i.e., corrupted or missing projections) are
identified. This is achieved by either 1) segmentation of CT
images for metallic implants and forward projection of the
resulting metal-only image into an artificial sinogram domain
[4], [26], [27], or 2) direct segmentation of raw sinogram data
for corrupted projections [10], [13], [16].

0278-0062 © 2013 IEEE
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During the last decade, iterative model-based image
reconstruction methods have established another class of al-
gorithms: these techniques originate from statistical methods
that estimate missing or incomplete data [28]. They can be
easily adapted to truncated and missing sinogram data by
ignoring or reducing statistical contributions of corrupted
projections, and by imposing constraints and prior knowledge
on the images being reconstructed [27], [29]–[31]. In this
class of algorithms, the missing projections are identified
by either image- and sinogram-based approaches used in
projection completion [29], [32] or a hybrid of both involving
iterative metal-only image reconstruction and metal-trace
segmentation [27], [33], [34]. These algorithms, however,
cannot entirely compensate for severe data corruptions [35],
and hence, their initiation and combination with projection
completion algorithms have also been investigated [32], [36].
Compared to projection completion methods, model-based
iterative image reconstruction is computationally inten-
sive. Recently, Van Slambrouck et al. [37] proposed a
region-based iterative reconstruction method to reduce the
computational complexity of this class of MAR algorithms.
In this method, the regions containing metals are recon-
structed using a fully polychromatic spectral model, while
other regions are reconstructed using a simpler model that
only considers the spectral behavior of water attenuation.
Although this approach tends to preserve structures near
metallic implants, the reconstructed images still suffer from
streaking artifacts in comparison with linear interpolation and
Meyer’s NMAR approaches.
In this work, we propose a new projection completion

MAR algorithm in which the recovery of missing projections
is formulated as a regularized inverse problem and some
prior information about the underlying complete sinogram
is exploited during the optimization process. Specifically, we
propose a sparse synthesis regularization for the estimation of
missing projections in the wavelet domain and exploit two
types of prior information: 1) the sparsity of a CT sino-
gram in a dictionary of translation-invariant wavelets and
2) the detail wavelet coefficients of a prior sinogram ob-
tained by a tissue-segmented CT image. The Doglous–Rach-
ford Splitting (DRS) algorithm was used for the optimization
of the problem. The sparsity of sinograms in the wavelet do-
main is promoted by a pseudo norm based on the ho-
motopic approximation of an norm. We also compare the
performance of the proposed MAR algorithm with standard
linear interpolation and NMAR algorithms using simulation
and clinical studies to assess its potential and demonstrate its
outperformance over these MAR approaches.

II. MATERIALS AND METHODS

A. Problem Formulation

We denote the 2-D log-processed sinogram of a CT slice as a
vector in , where is the number of detector channels times
the number of projection angles. Let be an observed sinogram
with metal traces that corrupt the projection data at the locations

indexed by the set . In the recovery of missing
projections, we formulate the following forward model:

(1)

where , is an incomplete sinogram,
is a lossy matrix that removes the projections

of over the set and represents data perturbations due
to white Gaussian noise (with variance of ). The matrix
can be thought of as an identity matrix that has

been downsized along rows, indexed by the
set . To estimate a sinogram with complete data, one ap-
proach is to invert the problem (1) by minimizing the cost

function , which is derived by
considering Gaussian noise. However, this minimization has an
infinite number of possible solutions. To regulate the solution
space and penalize unsatisfactory solutions, one can impose
a priori knowledge about the solution through a regularizer
or prior . Therefore, the solution can be obtained by the
following optimization problem:

(2)

where stands for the Euclidean norm of the vector
, which is a special case of the norm defined as

, and is a regularization parameter
that controls the balance between the fidelity of the solution to
the observations and its regularity to prior knowledge.
In the context of compressed sensing and sparse signal re-

covery, the prior knowledge that an expected signal or solution
is sparse (i.e., having many zero components) is exploited to re-
cover it from its samples or incomplete measurements. When
is not sparse directly (e.g., in the sinogram domain), it is possible
to explore its sparsity or compressibility in an appropriate sparse
representation dictionary [38]. By definition, if is sparse (or
compressible) in the dictionary ,
most of its energy is represented by and compressed in a few
large magnitude coefficients. In other words, when is ex-
pressed as a linear combination of elementary func-
tions, the majority of the decompo-
sition coefficients, , are (close to) zero. The dictionary ,
namely synthesis (or reconstruction) operator, often consists of

concatenated orthonormal bases or tight
frames. In the case of a basis, is a square full-rank matrix
that satisfies, where is its conjugate
transpose, namely an analysis (or decomposition) operator and
is the identity matrix. In the case of a tight frame, is a

nonsquare matrix and a redundant dictionary that only satisfies
while [39], [40]. Given an appropriate

sparse dictionary, the solution of the problem (2) can be alter-
natively obtained through synthesization from its representation
coefficients, i.e., , where

(3)
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Fig. 1. Top: (a) A 512 512 block of a typical CT sinogram and (b), (c) its
two representative detail wavelet coefficients at two different resolution levels.
Bottom: The histograms of the images in (a)–(c) over 30 bins.

This formulation is referred to as a synthesis approach,
whereas the formulation of the problem (2) with the prior

is called an analysis approach [41]. Unless the
dictionary is a basis, the two formulations do not result in
the same solution. In fact, the synthesis approach empha-
sizes more on the sparsity of the solution, while the analysis
approach emphasizes a balance between the sparsity of de-
composition coefficients and the smoothness of the solution
[40]. In this study, we made use of a tight frame of transla-
tion-invariant wavelets and followed the synthesis approach
for the completion of missing projections. We employed
Daubechies 7/9 biorthogonal (D7/9) wavelets with four resolu-
tion levels and implemented by undecimated discrete wavelet
transforms and a lifting scheme. It is worth mentioning that
these wavelets are used in the JPEG-2000 image compression
standard [42]. Fig. 1 shows a 512 512 block of a typical CT
sinogram and its two representative detail wavelet coefficients
at two different resolution levels.
As seen in histograms, a CT sinogram is not directly sparse,

but can have a sparse representation in wavelet domain. One
of the most successful priors in describing the usually heavy-
tailed density of wavelet coefficients is the generalized Gaussian
distribution [43], whose logarithm is the th power of an
norm for

(4)

The norm can be utilized to promote the sparsity of the
wavelet coefficients. An ideal sparsity-promoting prior is the
norm, , which counts the number of nonzero compo-

nents of . However, this nonconvex prior results in an in-
tractable optimization problem and require global search opti-
mization techniques such as simulated annealing. There exist
convex norms or priors for , among which the
norm favors the highest degree of sparsity and hence as a
proxy to norm has garnered significant attention in com-
pressed sensing and sparsity regularization [44]–[46]. The

norm can, however, be homotopically approximated by a
pseudo norm as follows:

(5)

where is a quasi-convex potential function with a homotopic
parameter . As approaches zero, the pseudo norm ap-
proaches the norm. In this study, we employed the following
log potential function [46], [47]:

(6)

where is a normalization factor. As shown in Fig. 2(a), for
large values of , this potential function approaches an abso-
lute value function (associated with norm) and becomes
convex, while for small values of it becomes nonconvex and
approaches a zero-one potential function (associated with
norm).

B. Optimization Algorithm

To solve the optimization problem in (3), we follow the Dou-
glas–Rachford splitting (DRS) algorithm, which is targeted for
solving the following general minimization problem [48]:

(7)

where and are proper, convex and lower semi-continuous
(l.s.c) functions in a Hilbert space . To describe the DRS algo-
rithm, we first need to define the proximity operator
of a proper, convex and l.s.c function that maps to .
For every , the minimum energy of the envelope of

is achieved at a unique point, , called proximal map or
proximum, i.e., ([49])

(8)

By this definition, the DRS algorithm iteratively estimates the
minimizer of the problem (7) as follows:

(9)

(10)

where and are the proximity operators of
the functions and is a (variable) relaxation param-
eter in the range (0, 2) and and are two sequences as-
sociated with the proximity operators allowing for approxima-
tions in their calculation and inexact implementation. The exis-
tence and uniqueness conditions of a solution to the optimiza-
tion problem (7) using the DRS algorithm are discussed in [48].
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Fig. 2. (a) Comparison of the potential functions of , pseudo and
norms. (b) Thresholding rules induced by and pseudo norms.

For theoretical discussions on the convergence of the DRS al-
gorithm for nonconvex problems, interested readers should con-
sult [50]. To apply the DRS to the problem (3), we need to ob-
tain the proximity operator of the data fidelity term

, (i.e., ) and the operator of the prior
for a pseudo norm (i.e., ). In the following subsec-

tions, we derive closed-form solutions for these operators and
also discuss the incorporation of prior wavelet coefficients into
the DRS algorithm. As we obtain closed-form solution for the
proximity maps, we can simply set the and terms to zero
in (9) and (10).
1) The Proximal Map of Data Fidelity: The proximal map

of the data fidelity term, i.e.,

(11)

is obtained by equating the derivative of its objective to
zero, thereby the solution is given by:

. To calculate the inverse term in this
equation, we follow the matrix inversion lemma and make use
of the fact that , thereby the proximal
mapping is given by

(12)

In this study, we consider that the operator in (1) removes
the projections of without introducing noise. As a result, the
variance of noise, , in (12) is set to zero.

2) The Proximal Map of the Prior: The pseudo norm de-
fined in (5) is separable and follows the form ,
where . The proximal map of such
a separable function can therefore be obtained separately with
respect to each component as follows:

(13)

One can obtain a closed-form solution to the above problem
by the following thresholding rule (see Appendix A for more
details):

(14)

where . In this rule, as , the threshold
is slowly decreased. It can therefore play a role similar to

the cooling parameter of simulated annealing techniques, al-
lowing the solution to escape from local minima. As shown in
Appendix A, when the solution of problem (13) is given
by a soft thresholding rule [51], which is in fact the proximity
operator of an norm. Fig. 2(b) compares the derived thresh-
olding rule with a soft thresholding rule. It can be seen that the
pseudo rule tends to linearly shrink the coefficients in

.
3) Incorporation of Prior Wavelet Coefficients: To improve

the accuracy of the restored wavelet coefficients and hence the
missing sinogram projections, we modify the DRS algorithm in
order to incorporate some prior wavelet coefficients obtained
from the sinogram of a prior image. For this purpose, we intro-
duce the detail sub-bands of such prior wavelet coefficients, ,
into (10) as follows:

(15)

where is in fact the wavelet coefficients with zeroed ap-
proximate sub-band. In this modification, the thresholding of
wavelet coefficients is disturbed by subtracting the energy cor-
responding to the prior coefficients, and then removed energy is
added back. The rationale behind this modification is based on
the observation that the algorithm can properly restore the ap-
proximate sub-band of the wavelet coefficients of missing pro-
jections from adjacent coefficients. However, as usually a large
area of sinogram projections is corrupted by metallic implants,
the detail coefficients are not properly restored. Therefore, the
introduction of prior detail coefficients can improve the accu-
racy of the estimation. To this end, Algorithm 1 summarizes the
proposed algorithm in the recovery of missing projections.
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Fig. 3. Flowchart of the proposed wavelet-based -DRS algorithm. In this algorithm, the uncorrected image is segmented to produce metallic implants and a
prior image. The images are then forward projected by the operator . The corrupted projections are identified and filled with a constant value. The resulting
sinograms are transformed into the wavelet domain by the operator . The approximate sub-band of the prior wavelet coefficients is set to zero. The wavelet
coefficients are fed into the DRS algorithm, which estimates the wavelet coefficients of missing projections according to Algorithm 1. The estimated coefficients are
transformed back into the sinogram domain by the operator and the corrected images are reconstructed using filtered back-projection (FBP) and superimposed
by the implants.

ALGORITHM 1: -DRS ALGORITHM

Choose: and initialize:

While do,

1. Compute the proximal map, , of data fidelity for
according to (12).

2. Threshold the coefficients according
to (14).

3. Compute according to (15).
4. Impose nonnegativity constraint:

.
5. Update the variables:

.

Output: .

In this algorithm, we let iteratively approaching zero using
the relaxation parameter and set . The reg-

ularization parameter should be large enough to ensure the
thresholding of the wavelet coefficients. Therefore, we set it
to the maximum projection value of . A global convergence
was declared when the normalized error of two successive
iterates falls below a tolerance of . The initial
guess of the wavelet coefficient, , is obtained from the for-
ward wavelet transform of a sinogram, in which missing pro-
jections have been filled with a nonzero constant value. Fig. 3
shows the flow chart of the proposed algorithm. The missing
projections are identified by the forward projection (or radon
transform, ) of a metal only image, obtained from the seg-
mentation of metallic implants in the uncorrected image. The
prior image was obtained by the approach proposed by Meyer
et al. [25] (see next section for details). In this work, we fol-
lowed a block-wise approach in the recovery of missing projec-
tions, using two overlapping 512 512 blocks, automatically
portrayed on missing regions of the sinograms (see next section
for the specifications of sinograms). This approach favors the
fact that discrete wavelet transforms are typically implemented
for dyadic- and square-sized matrices.
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C. Simulation and Clinical Studies

In this study, the performance of the proposed MAR algo-
rithm was evaluated on artificial sinograms (raw data) obtained
from the forward projection of original uncorrected CT images.
To acquire such data in conditions closely matched to actual
acquisition, we consider the fan-beam geometry of a simulated
single-slice CT scanner with 888 detector channels, 984 an-
gular samples over a 360 orbit, detector pitch of 1 mm, 949
mm source to detector distance, 541 mm source to iso-center
distance, 408 mm iso-center to detector distance. The geo-
metric system matrix describing this scanner was generated
by the MATLAB-based Image Reconstruction Toolbox [52]
and line integrals were employed during forward projection
to obtain the Radon transform. Following the correction of
the sinograms for corrupted projections, the corrected images
were reconstructed using the FBP algorithm, with Ram–Lak
filter, for a resolution of 512 512, pixel size of 0.97 mm and
a 500-mm field-of-view. The Ram–Lak filter was chosen to
best preserve the sharpness of the reconstructed images. Algo-
rithm 1 together with undecimated discrete wavelet transforms
were implemented in MATLAB 2010a, running on a 12-core
workstation with 2.40-GHz Intel Xeon processors and 32 GB
memory.
In this study, we followed Meyer’s approach [25] to define

the prior image. In this approach, the original CT image, con-
taminated by streaking artifacts is segmented for three tissue
types: air, bone, and soft tissue. For this purpose, we used
simple thresholding to segment CT images. Soft tissues were
segmented using a threshold of 624 HU, while bone tissues
were segmented at 1300–1400 HU, depending on the organ or
slice being examined. Note that dark and bright streak artifacts
can be falsely segmented as air and bone in the segmented
soft and bone images, respectively. These false segmentations
were respectively eliminated by close and open morphological
filtering. As suggested by Prell et al. [23], an alternative way
in such cases can be the segmentation of an image precorrected
using a linear interpolation MAR algorithm. Following the seg-
mentation, the CT numbers of air and soft tissue regions were
set to and 0 HU, respectively, and the numbers of bone
regions were kept the same as the original image because of
the variation of bone density and CT numbers. In the obtained
prior image, we assigned the CT number of soft tissue to metal
implants. The performance of the proposed MAR algorithm
was evaluated using a number of simulated and clinical studies
of patients with hip prostheses, electroencephalogram (EEG)
electrodes, dental fillings and spine fixation. As mentioned
earlier, the missing projections and thereby the metal trace set
, were identified by the forward projection of a segmented

metal only image. The segmentation of metallic implants was
performed by a simple thresholding at about 3000 HU for
dental fillings and 2000 HU for other implants. In some cases,
a morphological dilation was performed on the segmented
implants to more accurately include all pixels belonging to the
implants.
To objectively evaluate the performance of the proposed

MAR algorithms with respect to ground truth CT image (i.e.,
without metal artifacts), we retrospectively generated metal

artifacts in the artifact-free CT image of two patients with
simulated bilateral hip prostheses and head EEG electrodes
(see Fig. 4). To simulate beam hardening and the resulting
streaking artifacts, we modeled the polychromatic propagation
of X-ray beams through the patient body. For this purpose,
the original CT images were segmented into three classes,
i.e., air, soft tissue, bone and were superimposed by iron
implants. A polyenergetic X-ray spectrum was generated by
SpekCal software [54] for a tube voltage of 140 kVp, 2.5 mm
aluminum filtration, 30 anode angle and a tube output of

at 1 m. As shown in Fig. 5, the spectrum
was uniformly sampled for 51 monoenergitic X-ray beams with
an intensity and average energy calculated over each energy
interval. For each beam, the energy-dependent linear attenu-
ation coefficients of the classes were derived from the NIST
XCOM photon cross section library [55]. The attenuation maps
were forward projected and then the Poisson noise realization
of the resulting sinograms were summed up to get a sinogram
acquired under the polychromatic propagation of X-ray beams.
The resulting sinogram was log-processed and reconstructed
by FBP algorithm.
As shown in Fig. 4, the reconstructed artificial CT images

suffer from streaking artifacts. In this simulation, scatters and
nonlinear partial volume effect was not modeled. Following
the generation of an artificially degraded image, we treated
it as a really degraded CT image, from which we obtained a
prior image, metallic implants, missing projections in the sino-
grams resulting from the polychromatic propagation of X-ray
beams. In addition, for each dataset a ground truth image was
obtained using the above-mentioned procedure by considering
the metallic implants as bony structures.
In the simulated datasets, we evaluated the performance

of the proposed -DRS algorithm in comparison to conven-
tional linear interpolation and the NMAR algorithm proposed
by Meyer et al. [25]. In the objective comparison of MAR
algorithms, two regions of interest (ROIs) were drawn on
uncorrected images and the normalized root mean square
difference (NRMSD) and mean absolute deviation (MAD) be-
tween corrected images and their ground truth
were calculated for each ROI as follows:

%

(17)

(18)

For the clinical evaluation of the MAR algorithm, the CT
datasets of eight patients were used. The data were acquired in
helical mode on the Biograph 64 True Point PET/CT and Sensa-
tion 16 CT scanners (Siemens Healthcare, Erlangen, Germany),
which have been respectively equipped with 40- and 24-row de-
tectors. The datasets include: uni- and bi-lateral hip prostheses
(two patients), dental fillings (three patients), spine fixation (one
patient), and EEG electrodes (two patients). Table I summarizes
the scanning parameters of the datasets. For quantitative evalu-
ation of the MAR algorithms in these datasets, we calculated the
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Fig. 4. Simulation of metal artifacts based on the polychromatic propagation of X-ray beams. Original CT images are segmented into different tissue classes and
superimposed by metallic implants. The X-ray spectrum is sampled for a finite number of energies. The attenuation coefficients of each class is then calculated for
each energy and the Poisson noise realization of their sinograms are then summed up and log-processed. The resulting sinograms are then reconstructed by FBP
algorithm, which results in the artificial CT images with streaking artifacts. (Display window/level in first and second rows: 700/90 and 800/50 HU, respectively).

absolute mean deviation (AMD) between the mean CT numbers
of two ROIs defined on uncorrected and corrected CT images
over streaking artifacts. Owing to the absence of a ground truth
in clinical datasets, we defined a same-size ROI on uncorrected
images far from streaking artifacts and used it as a reference
ROI.

III. RESULTS

A. Simulation Studies

Fig. 5 shows the results of metal artifact reduction of the
simulated bilateral hip and EEG head datasets using the studied
MAR algorithms. In both datasets, the algorithms have notice-
ably reduced streaking artifacts. However, linear interpolation
cannot effectively reduce the artifacts, since new artifacts

have been introduced in the corrected images. The NMAR
and proposed algorithms have noticeably reduced the artifacts,
thereby improving the quality of the corrected images. In the
hip dataset, the two algorithms depict nearly the same level
of artifact reduction; however, as can be seen, the proposed
algorithm tends also to restore the regions of metallic implants.
In the head dataset, the proposed algorithm shows less residual
artifacts in comparison with NMAR. Moreover, in this simu-
lated dataset and also clinical datasets with EEG electrodes, we
noticed that the NMAR algorithm introduces wide and severe
bright streaking artifacts at the borders near the electrodes (see
Fig. 5), which are due to the normalization of projection bins
by small values at these regions. To practically reduce this
effect in clinical datasets, we expanded the soft tissue region of
prior images for this algorithm. Furthermore, to avoid division



1714 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 5. Illustration of metal artifact reduction of simulated hip prostheses (top) and head EEG CT studies (bottom) (WW/WL HU).

TABLE I
SUMMARY OF CT SCANNING PARAMETERS USED IN THE CLINICAL STUDIES

TABLE II
ROI-BASED QUANTITATIVE EVALUATION OF THE STUDIED MAR ALGORITHMS USING SIMULATED HIP AND EEG CT STUDIES IN TERMS OF NRMSD AND MAD

by zero during normalization, we thresholded zero bins in the
sinogram of the prior image at a threshold value . Small
values of have been suggested by Meyer et al. [25]; however,
these values can result in highly inaccurate values in the nor-
malized sinograms and hence can contribute to the appearance
of severe bright streaking artifacts in the EEG datasets.
For quantitative comparison of the algorithms with respect to

the ground truth image, two ROIs were defined on the degraded
CT images (see Fig. 5, first column): one large rectangular ROI,
namely ROI 1, to cover the most part of affected areas, and one
circular ROI, namely ROI 2, for local evaluations near the im-
plants. Table II summarizes the NRMSD and MAD results for
the two datasets. In the ROI-based evaluations, the regions of
metallic implants were excluded from the ROIs of (un-)cor-
rected and ground truth images, since the implant are finally
added back to the corrected images. The results of both datasets
show that the proposed algorithm outperforms both linear inter-
polation and NMAR algorithms globally (in ROI 1) and locally

(in ROI 2) through achieving lower NRMSD and MAD values.
To further evaluate the algorithms, Fig. 6(a)–(c) shows three
projection profiles on the sinograms of the hip dataset completed
by the studied MAR algorithms along the dash lines shown in
Fig. 6(d). As can be seen, the proposed MAR algorithm has
more accurately estimated the missing projections toward the
true projections.
For both simulated datasets, the relaxation parameter

in Algorithm 1 was set to 0.8. To obtain this heuristically
optimal value and also to evaluate the impact of on MAR
performance and convergence rate of the proposed algorithm,
we performed a set of experiments with different values of
and monitored the variations of NRMSD in the defined ROIs.
Fig. 7(a) and (b) shows NRMSD versus different values of
in the range 0.65–0.95 with the increment value of 0.05 for
ROIs 1 and 2, respectively. The results show that an optimal
value of for these datasets is in the range 0.75–0.85. Thereby,
we chose a mid value of 0.8 as an optimal value. The visual
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Fig. 6. Comparison of the projection profiles completed by the evaluatedMAR
algorithms with the true profiles of the hip prosthesis data along the dash lines
shown in (d).

comparison of the corrected images with different values did
not reveal a significant difference.
The small variations of NRMSD of ROIs in both datasets,

whose standard deviations are 0.01–0.2 in ROI 1 and 0.04–0.3
in ROI 2, reflect this observation. Fig. 7(c) shows the number of
elapsed iterations for different values of the relaxation param-
eter. It turns out as increases the number of iterations also in-
creases. In fact, for lower values of , the homotopic parameter
in (6) decays faster to zero, thereby the pseudo norm ap-

proaches an norm after fewer number of iterations. It should
be emphasized that these results were obtained for a tolerance

in Algorithm 1. Therefore the algorithm was
stopped when the relative difference between two successive
wavelet coefficients is less than 1%. It was found that smaller
tolerance values have no a significant effect on the quality of
corrected images but can potentially increase the number of iter-
ations and computation time. The average computational time of

Fig. 7. Objective performance of the proposed -DRS MAR algorithm for
different relaxation parameters using the simulated hip and head CT data in
terms of (a) and (b) NRMSD in ROIs 1 and 2, and (c) the number of required
iterations to reach convergence.

our MATLAB-based implementation of the proposed -DRS
algorithm was found to be around 5.1 seconds per iteration.
Therefore, our simulation results show that higher values of
and might not be prudent in terms of image quality and com-
putational time.

B. Clinical Studies

The simulated hip and EEG studies, which had different num-
bers and sizes of metallic implants, showed that the proposed
algorithm achieves its best performance in terms of improve-
ment of image quality and the required number of iterations
when using and . In our clinical studies,
we initialized the proposed -DRS algorithm using the above
values and, similar to simulation studies, compared its perfor-
mance against linear interpolation and NMAR algorithms. As
mentioned earlier, four different categories of metallic implants,
including hip prostheses, dental fillings, spine pedicle screw fix-
ation and EEG electrodes were considered in this work. In each
category, we selected three CT slices for qualitative evaluations.
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Fig. 8. Illustration of metal artifact reduction of the clinical hip prosthesis datasets (W W/WL HU).

For each slice, three ROIs were defined on artifact degraded re-
gions near metallic implants, namely ROIs 1 and 2, and on a
background region far away from artifacts, namely ROI B and
the absolute deviation between the mean CT number of ROIs 1
and 2 and that of ROI B was calculated.
1) Hip Prostheses: Fig. 8 shows the results of metal artifact

reduction in CT slices of two patients with uni- and bi-lateral
hip prostheses. As summarized in Table I, these patients have
undergone a low-dose CT scan for attenuation correction as part
of clinical PET/CT examinations. As can be seen, the metallic
implants resulted in severe bright and streaking artifacts mostly
due to beam hardening and photon starvation. The MAR algo-
rithms have substantially reduced streaking artifacts. However,
linear interpolation has introduced new artifacts, especially in
the second-row dataset in which there are two large hip pros-
theses that corrupt a large number of projections, which makes
pure interpolation inefficient. The NMAR algorithm improves
the performance of linear interpolation by normalization with
a prior sinogram. In comparison, it has remarkably improved
image quality; however, there are still residual dark and new
bright artifacts in the first- and second-row images. The pro-
posed wavelet-based MAR algorithm, which incorporates the
same prior sinogram as in NMAR, has also improved image
quality and visually achieved the same level of artifact reduc-
tion as NMAR. However, a close inspection revealed that the
proposed algorithm has reduced more effectively the residual
dark streaking artifacts in the first-row image and has intro-
duced less bright artifacts in the second-row image around the
implants. For the quantitative evaluation of the algorithms, we
delineated ROIs 1, 2, and B on the uncorrected image, as shown
in Fig. 8, first column. The ROIs are of the same size, 30 mm
in diameter. Since in this case, ROI B contains streaking arti-

facts, we used the NMAR image as a reference for this back-
ground ROI. The quantitative results are presented in Table III.
Note in this table the cases 1–3 correspond to the images shown
in first to third rows. The results show the proposed algorithm
generally achieves lower AMD values compared to NMAR al-
gorithm in both ROIs that were defined in regions impaired with
dark streaking artifacts. It should be noted that in the third case,
linear interpolation outperforms the other algorithms algorithm;
however, in terms of overall image quality, the proposed and
NMAR have a better performance.
2) Dental Fillings: The reduction of artifacts arising from

dental fillings is a challenging task because there are often mul-
tiple high-density implants that severely corrupt projection data
and thereby the resulting streaking artifacts obscure diagnosti-
cally important information in the dental arch area. Fig. 9 shows
the results of artifact reduction in CT data of three patients pre-
senting with dental fillings. As can be seen, linear interpola-
tion introduced new streaking artifacts in all three cases. Be-
cause, as mentioned above, in such cases there are multiple
closely-seated dental fillings which make pure interpolation of
corrupted projections from neighboring projections inefficient
and even inaccurate. The images corrected by NMAR and the
proposed algorithm show a substantial improvement in artifacts
reduction without introducing new severe ones. Note that in the
case of the first and second row datasets, we applied a dila-
tion morphological filtering (with disk-shaped structuring ele-
ment of 1.94 mm radius) to the segmented metallic implants in
order to completely remove residual artifacts in the images cor-
rected by NMAR and proposed MAR algorithms. Afterwards,
the original segmented metals were added back to the images.
The comparison of results in the first-row dataset, which has
been acquired with arms up, shows that the proposed algorithm
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TABLE III
ROI-BASED QUANTITATIVE EVALUATION OF THE STUDIED MAR ALGORITHMS IN THE CLINICAL CASES, SHOWN IN FIGS. 9–11, IN
TERMS OF AMD BETWEEN THE MEAN CT NUMBER OF TWO ROIS, DRAWN ON ARTIFACT REGIONS (NAMELY, ROI 1 AND 2), AND
THAT OF A REFERENCE ROI, DRAWN ON A BACKGROUND REGION FAR FROM ARTIFACTS (NAMELY ROI B). FOR EACH DATASET,

THE CT IMAGES OF CASES 1–3 HAVE, RESPECTIVELY, BEEN SHOWN IN THE FIRST TO THIRD ROWS OF THE FIGURES

outperforms its NMAR counterpart by the reduction of artifacts
without introducing new blurring-like artifacts in the palatine
area. In the second-row dataset, the same trend is also observed,
although the performance of the algorithms is more comparable.
In the third-row dataset, the proposed algorithm has, however,
slightly introduced new bright streaking artifacts in the area be-
tween the implants. For quantitative comparison of the algo-
rithms, three ROIs (20 mm in diameter) were defined on the
uncorrected images, as shown in Fig. 9. The results of ROI anal-
ysis show that the -DRS algorithm outperforms the NMAR
algorithm by achieving lower values of absolute mean deviation
with respect to the background ROI B.
3) Spine Fixation: Fig. 10 shows the results of metal arti-

fact reduction in three CT slices of a patient with spine fix-
ation undergoing low-dose CT imaging in the context of a
PET/CT examination. The results show that the reduction of
artifacts in this localization is somehow challenging, since the
implants are seated close together and several bony structures
surround the implants. In all three cases, linear interpolation
is not efficient and introduces new streaking artifacts. In the
first-row dataset, the NMAR and proposed algorithms sub-
stantially suppress dark streaking artifacts; however, both of
them have introduced blurring and new artifacts around and
beneath the implants. In the second- and third-row datasets,
both algorithms have noticeably reduced the artifacts in com-
parison with linear interpolation, particularly in the last one,
where both algorithms have almost eradicated the artifacts.
The quantitative evaluation of the algorithms was performed
using the same-size (20 mm in diameter) ROIs. The results

have been summarized in Table III. It turns out that the pro-
posed algorithm can generally outperform NMAR, which can
be verified by visual interpretation of the corrected images in
for example ROI 2 of first-row dataset. As can be seen, the
proposed algorithm has comparably introduced less dark arti-
facts in that region.
4) EEG Electrodes: Fig. 11 shows the results of metal

artifact reduction of the CT data presenting with EEG elec-
trodes. As expected, linear interpolation lags behind NMAR
and the proposed algorithm since they make use of some prior
information during projection completion. In the first- and
second-row datasets, a morphological dilation filtering (with a
disk element of radius 1.94 mm) was applied on the segmented
metallic implants, because our preliminary results showed
that simple thresholding cannot guarantee the identification of
all corrupted projections and thereby dark streaking artifacts
reappear in the reconstructed images. As mentioned earlier, in
the case of NMAR algorithm, the soft tissue portion of the prior
images of the datasets was expanded by a dilation filtering, as
this algorithm results in extremely severe bright artifacts at the
borders. The results show that in all three datasets, the proposed
algorithm outperforms its counterparts. The outperformance
of this algorithm is more noticeable in the amount of residual
artifacts in the cranium area. More accurate artifact reduction
in regions close to electrodes is achieved by the proposed
algorithm.
As can be seen, linear interpolation and NMAR algorithms

have respectively distorted and underestimated soft tissues
around the electrodes. The quantitative analysis was performed
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Fig. 9. Illustration of metal artifact reduction of clinical dental filling CT data (WW/WL HU).

for same-size ROIs (30 mm in diameter) shown in Fig. 11,
first column. The results presented in Table III show that the
proposed algorithm achieves lower metric values, resulting
from the introduction of less artifacts in this region.
To further assess the performance of the studied algorithms in

the sinogram domain, Fig. 12 compares the sinograms of uncor-
rected and corrected images of two datasets. The first row shows
the sinograms of the bilateral hip dataset shown in Fig. 8 (middle
row), while the second one shows those of the EEG electrode
dataset shown in Fig. 11 (middle row). In both cases, the sino-
grams with missing projections (metal traces) have also been
shown. As can be seen, linear interpolation simply bridges the
missing area and results in discontinuities. This inaccurate pro-
jection completion also appears in the NMAR algorithm, espe-
cially in the second-row sinogram, where in some projection an-
gles the missing projections are close to the border of the head.
In both datasets, the proposed algorithm has more accurately
and continuously estimated the missing projections.

IV. DISCUSSION

The presence of permanent metallic implants in patients un-
dergoing X-ray CT imaging can induce streaking metal artifacts
that impair the diagnostic quality and clinical usefulness of CT
images. In this work, we proposed a new projection completion
based MAR algorithm by formulating the recovery of missing
projections as a regularized inverse problem and employed a

pseudo sparsity-promoting prior to impose the prior knowl-
edge of the sparsity CT sinograms in a dictionary of transla-
tion invariant wavelets. Furthermore, we exploited the detail
sub-bands of the wavelet coefficients of a prior sinogram to im-
prove the efficiency of the proposed algorithm.
We compared the proposed algorithm with linear interpola-

tion and Meyer’s NMAR algorithms. The NMAR algorithm
uses prior sinogram for normalizing and flattening the neigh-
boring projections of missing regions, thus facilitating the in-
terpolation task. In contrast, our proposed algorithm is based
on solving an optimization problem in which the missing pro-
jections are iteratively estimated. In this algorithm, the prior
sinograms are exploited in a very different approach. The de-
tail wavelet coefficients of a prior sinogram are iteratively in-
troduced into this algorithm during the pseudo -based thresh-
olding of intermediate wavelet coefficients (see Algorithm 1).
Following the convergence of the algorithm, declared by a stop-
ping criterion, an inverse wavelet transform is applied on the
estimated coefficients and the completed sinogram is obtained.
Zhao et al. [11] proposed a related projection completion MAR
algorithm in the wavelet domain. In this algorithm, the missing
projections are one-dimensionally interpolated by a weighted
sum of the wavelet coefficients of the corrupted projections and
the wavelet coefficients of linearly interpolated projections. Al-
though theoretically well-founded, this algorithm did not sig-
nificantly reduce metal artifacts compared to standard linear in-
terpolation. In contrast, the proposed algorithm is an iterative
wavelet-based algorithm in which missing projections are two-
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Fig. 10. Illustration of metal artifact reduction of clinical spine fixation CT data (WW/WL HU).

Fig. 11. Illustration of metal artifact reduction of clinical head EEG studies (WW/WL HU). The results show that the proposed algorithm results in the
lowest residual artifacts, especially at the borders near to the electrodes.
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Fig. 12. Comparison of the sinograms completed by the studied MAR algorithms. Top to bottom: the sinograms of the images shown in the middle row of Figs. 8
and 11, respectively. In first column, the missing projections (metal traces) have been shown with zero-intensity.

dimensionally optimally estimated by thresholding and prox-
imal mapping schemes.
To objectively assess the efficacy of the proposed algorithm

with respect to a ground truth, we simulated metal artifacts in
tissue-segmented CT datasets by considering the polychromatic
propagation of X-ray beams. As can be seen in Fig. 4, the re-
sulting streaking artifacts impair the tissues in the same way as
a real CT acquisition. Although in this simulation the generation
of streaking artifacts due to scatters and nonlinear partial effect
was not modeled, it provided us with a ground truth and an arti-
ficially degraded image. Thereby, the performance of the algo-
rithms was evaluated for a data recovery problem in which the
amount of missing data and the source of available data are the
same. Moreover, as the simulations were performed on phan-
toms derived from clinical cases, the impact of the relaxation pa-
rameter on the performance of the proposed algorithm could
be objectively optimized and used in our clinical studies. De-
spite the absence of ground truth for patients with metallic im-
plants, we also followed an ROI-based quantitative evaluation
approach for the evaluation of MAR algorithms using clinical
datasets and reference ROIs defined on uncorrected images. It is
worth nothing that there are few reference-free criteria such as
band-pass filtered gradient (BPG) [56] and regression without
truth (RWT) [57], which can be respectively used to evaluate
the performance of MAR algorithms in the sinogram domain
and on images of a population of patients [58]. However, these
methods need for optimization tasks and parameter selections,
which complicate the evaluation procedure.
In both simulated and clinical studies, the segmentation of un-

corrected images to produce metallic implants and prior images
were performed by simply thresholding. The dark and bright
artifacts falsely segmented as air and bone regions were elimi-
nated by close and open morphological filtering. The accuracy
of the prior image is of great importance for the performance of
both NMAR and the proposed algorithm, since segmentation er-
rors in prior image can reappear in final reconstructions. For ac-
curate segmentation of artifacts from anatomy in a prior image,

automatic procedures through adaptive and knowledge-based
thresholding have been described in [59] and [60], respectively.
The evaluation of the proposed -DRS algorithm against

linear interpolation and NMAR algorithms using various
simulated and clinical datasets showed that our algorithm can
outperform its counterparts objectively and subjectively and
therefore reduce metal artifacts in a more efficient way. Its
improved performance should be ascribed to the facts that this
wavelet-based MAR algorithm decomposes a sinogram into
several resolution levels and estimate the missing projections
in approximate and detail sub-bands through a thresholding
scheme guided by prior wavelet coefficients. One of the current
limitations of the proposed algorithm in comparison with
NMAR is computational time. In this study, we exploited
translation invariant wavelets implemented by undecimated
discrete wavelet transform (UDWT). In this implementation,
the decimation (down sampling) is eliminated in favor of
invariance to the shifts of an input image, thus avoiding the
star-like artifacts usually induced by the standard decimated
wavelet transform. However, due to its redundancy, the UDWT
is of higher computational complexity and renders the com-
putational cost of our iterative MAR algorithm relatively
expensive. The average computation time of the algorithm in
the clinical datasets was found to be about 5 min. In this work,
the performance of the proposed algorithm was evaluated for
four resolution levels yielding a redundancy factor of 1:13,
since there are three detail sub-bands for each resolution level
(in horizontal, vertical and diagonal directions) and one ap-
proximation sub-band for all levels. In addition, we followed
a block-wise recovery of missing projections in the wavelet
domain. For each sinogram, two overlapping 512 512 blocks
were considered, therefore the matrix size of UDWTs became
512 512 13 2, which obviously calls for an increased
number of arithmetic operations. Future work will focus on
decreasing the computational burden of the algorithm by: 1)
performance and trade-off assessment of the algorithm for
lower resolutions and use of other wavelets such as Daubechies
wavelets with a vanishing moment of 4, 2) employing smaller



MEHRANIAN et al.: X-RAY CT METAL ARTIFACT REDUCTION USING WAVELET DOMAIN SPARSE REGULARIZATION 1721

block sizes, and 3) implementation of UDWT in MATLAB
MEX file or C/C++. In addition, future work will concentrate
on improving the performance of the proposed algorithm by
utilizing modified sub-bands of the corrupted sinograms to
better preserve the edge information around metallic implants.

V. CONCLUSION

In this study, an wavelet-based projection completion
algorithm was proposed for metal artifact reduction in X-ray
CT imaging. In this algorithm, the completion of missing
projections was formulated as regularized inverse problem
which was solved using the Douglas–Rachford splitting algo-
rithm. The sparsity of the wavelet coefficients of CT sinograms
as well as the detail wavelet coefficients obtained from the
segmentation of the uncorrected images were exploited in
the algorithm as prior information. The performance of the
proposed -DRSMAR algorithm was compared with conven-
tional linear interpolation and the normalized MAR algorithm
proposed by Meyer et al. [25]. It was demonstrated that in
simulation and clinical studies the proposed algorithm can
outperform it counterparts based on objective and subjective
metrics. In conclusion, the proposed MAR algorithm proved to
be promising in reducing metal artifacts in X-ray CT imaging.

APPENDIX A

To solve the problem in (13) for the quasi-convex log func-
tion, we follow the proof of proposition 1 in [61]. When ,
it is clear that the unique minimizer is is zero.
Moreover, as the log potential function

is even-symmetric, therefore the minimizer of this problem is
odd, i.e., , and one can only con-
sider . By equating the derivative of the objective of the
problem to zero, i.e.,

a quadratic equation is obtained, whose real positive root is
given by

(A1)

if . For , one can exploit the oddness
property of this solution, thereby the minimizer of the problem
reads: if . From above, it
is deduced that in the interval and thus

are zero. Hence, the solution is obtained as in (14).
When , the equation in (A1) asymptotically approaches

with real positive values for , which
gives rise to a soft thresholding rule as follows:

(A2)
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