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Abstract
Purpose.This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed
tomography (CT) andmagnetic resonance imaging (MRI) radiomics features in combinationwith
clinical and dosimetric features in rectal cancer patients.Methods.A total of sixty-three patients with
locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-
CRT)were included in this study. Radiomics features were extracted from the rectum and bladder
walls in pretreatment CT andMR-T2W-weighted images. Feature selectionwas performed using
variousmethods, including Least Absolute Shrinkage and SelectionOperator (Lasso),Minimum
RedundancyMaximumRelevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA),
Recursive Feature Elimination (RFE), and SelectPercentile. Predictivemodelingwas carried out using
machine learning algorithms, such as K-nearest neighbor (KNN), Support VectorMachine (SVM),
Logistic Regression (LR), Decision Tree (DT), RandomForest (RF), Naive Bayes (NB), Gradient
Boosting (XGB), and LinearDiscriminant Analysis (LDA). The impact of the Laplacian ofGaussian
(LoG) filter was investigatedwith sigma values ranging from0.5 to 2.Model performance was
evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy,
precision, sensitivity, and specificity.Results.A total of 479 radiomics features were extracted, and 59
features were selected. The pre-MRI T2Wmodel exhibited the highest predictive performancewith an
AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and
specificity: 88.09/97.14%. These results were achievedwith both original image and LoGfilter
(sigma= 0.5–1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively.
Furthermore, for the CTdata, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%,
sensitivity: 93.0/96.0%, and specificity: 88.09/97.14%were acquired. The highest values were
achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoGfilter (sigma= 2)/LoG

RECEIVED

24 July 2023

REVISED

8November 2023

ACCEPTED FOR PUBLICATION

23November 2023

PUBLISHED

20December 2023

© 2023 IOPPublishing Ltd

https://doi.org/10.1088/2057-1976/ad0f3e
https://orcid.org/0000-0001-6702-9172
https://orcid.org/0000-0001-6702-9172
https://orcid.org/0000-0003-0761-1309
https://orcid.org/0000-0003-0761-1309
https://orcid.org/0000-0001-5359-2407
https://orcid.org/0000-0001-5359-2407
https://orcid.org/0000-0002-5383-4418
https://orcid.org/0000-0002-5383-4418
mailto:mohammadreza_ay@tums.ac.ir
mailto:srmahdavi@hotmail.com
https://doi.org/10.1088/2057-1976/ad0f3e
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/ad0f3e&domain=pdf&date_stamp=2023-12-20
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/ad0f3e&domain=pdf&date_stamp=2023-12-20


filter (sigma= 0.5–2), respectively.MRMR/RFE-Chi2 feature selectionmethods demonstrated the
best performance for proctitis and cystitis in the pre-MRIT2Wmodel.MRMR/MRMR-Lasso yielded
the highestmodel performance for CT.Conclusion.Radiomics features extracted frompretreatment
CT andMR images can effectively predict radiation-induced proctitis and cystitis. The study found
that LDA,DT, RF, andXGB classifiers, combinedwithMRMR, RFE, Chi2, and Lasso feature selection
algorithms, alongwith the LoGfilter, offer strong predictive performance.With the inclusion of a
larger training dataset, thesemodels can be valuable tools for personalized radiotherapy decision-
making.

1. Introduction

Rectal cancer is the second most prevalent form of
cancer in the large intestine, and its primary treatment
modalities include radiotherapy, chemotherapy, and
surgery [1, 2]. Radiotherapy, in particular, can lead to
various early and late effects on the rectum and
bladder, potentially causing proctitis, cystitis, and a
range of toxicities such as bowel obstruction, fistula,
perforation, dysuria, hematuria, and a significant
decrease in quality of life. These complications are
contingent on multiple clinical factors, including
radiation dose and the patient’s clinical, biological,
and genomic characteristics [3–5].

1.1. The potential of radiomics
The analysis of radiation toxicity in rectal cancer can
be enhanced through the use of image-based features,
which aid physicians in mitigating radiation risks and
determining the feasibility of local tumor control
[6, 7]. Radiomics, a novel imaging analysis approach,
involves the quantification of high-dimensional data
extracted from medical images, providing valuable
information about pathophysiological properties
[8–10]. In the context of radiotherapy, radiomics
feature analysis of the target volume and organs at risk
(OARs) can have various applications, such as diag-
nostics, risk stratification, disease-free survival predic-
tion, automatic segmentation, target volume
definition, toxicity prognosis, treatment plan optim-
ization, adaptive re-planning, decision support, treat-
ment response assessment, and follow-up [8, 11–13].

1.2. Predictivemodeling for radiation-induced
damage
Developing predictive models for radiation-induced
toxicity is crucial for optimizing radiotherapy dosages
and enhancing patients’ quality of life [14]. Artificial
intelligence can predict potential complications in the
rectum and bladder, such as proctitis and cystitis, by
learning from previous cases [15]. If reliable knowl-
edge can be effectively extracted, patient characteris-
tics, imaging data, and planned radiation therapy can
be correlated with the likelihood of severe symptoms.
This correlation enables the creation of a classification
model capable of identifying at-risk patients [16].
Indeed, multiple studies have highlighted the utility of
radiomics analysis in quantifying radiation therapy-

induced damage in various organs, including the
bladder, rectum, parotid, and lung [6, 17–22].

1.3. The current study
While a few studies have reported image-based
predictors for proctitis and cystitis [4, 14, 17, 18, 23],
the combination of different feature types has been
explored infrequently [24, 25]. In this study, we
propose a scheme for predicting rectal and bladder
toxicity using a combination of clinical, dosimetric,
and radiomics features extracted from pretreatment
planning computed tomography (CT) and magnetic
resonance imaging (MRI) in rectal cancer patients.
Our goal is to classify patients at risk of developing
proctitis and cystitis usingmachine learningmethods.

2.Methods

Figure 1 provides an overview of the methods
employed in this study, which can be divided into two
main phases: Data Acquisition, and Model Building
and Evaluation. Each phase is explained in detail
separately.

2.1.Data collection
The study received approval from the National Ethical
Committee (registration No. IR.TUMS.MEDICINE.
REC.1399.244). Informed consent was secured from
all patients for the use of their clinical data in the
current project. The study included sixty-three
patients with locally advanced rectal tumors who met
the following criteria: primary rectal cancer confirmed
through biopsy, TNM stage (cT3–4) or lymph node
involvement, and neoadjuvant chemoradiotherapy
followed by surgery (the standard method) [26].
Exclusion criteria encompassed a history of prior
chemotherapy or radiotherapy in the pelvic region,
distant metastases (which require different, palliative
treatment), and an absence of follow-up data.

2.2. Clinical and dosimetric data
Several clinical and dosimetric parameters were exam-
ined as potential predictors of rectal and bladder
toxicity. Patient demographic and clinical informa-
tion, including sex, age, baseline symptoms before
radiotherapy, smoking history, TNM staging, carci-
noembryonic antigen (CEA), tumor length (the
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distance of the tumor from the anal verge as starting
point to the end of the tumor, measured by an expert
physician using available tools), and tumor differentia-
tion (well, moderate, and poor), was gathered from
electronic medical records. In addition, dosimetric
data derived from dose-volume histograms (DVH)
were recorded, including the average dose (D mean),
minimumdose (Dmin), maximumdose (Dmax), and
the dose reaching 10%–100% of the desired volume
(D10 toD100) for the rectum and bladder walls.

2.3. CT andMRI protocols
Planning CT images were acquired from the patients
prior to radiotherapy using a Siemens SOMATOM
Sensation 64 machine with the following parameters:
image matrices of 512 × 512 pixels, voxel size of
0.98 × 0.98 × 2.5 mm3, kV of 120, mAs of 225, and a
slice thickness of 1.5 mm. MR T2W images were
obtained for all patients using a 1.5-Tesla Siemens
Avanto machine, with a repetition time (TR) of
3000 ms, echo time (TE) of 101 ms, matrix size of
256× 256, and a slice thickness of 3 mm.

2.4. Treatment and toxicity assessment
Patients received treatment through three-dimen-
sional conformal radiation therapy (3D-CRT)utilizing
an 18 MV linear accelerator (Siemens ONCOR
Impression Plus, Germany). A total dose of 50.40 Gy,
delivered in 28 fractions at 1.8 Gy per session, was
administered for rectal cancer treatment. Chemother-
apy consisted of oral capecitabine at a dose of
825 mgm−2, taken twice daily during external radia-
tion therapy. To assess toxicity in rectal cancer
patients, the European Organization for the Research
and Treatment of Cancer (EORTC) QLQ-C29 tool
was employed. This tool includes 18 items that
evaluate gastrointestinal symptoms, pain, and mic-
turition problems. It also includes separate scales for
participants with orwithout a stoma and specific items
addressing sexual function for both men and women
[27]. Proctitis and cystitis were considered as the
study’s endpoints. Patients were initially assessed for
these toxicities before the commencement of radio-
therapy, and further assessments were conducted
during treatment and up to two months after

Figure 1. Flowchart of the study.
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completing chemotherapy (prior to surgery). Patients
were categorized into two groups: those with compli-
cations scoring equal to or higher than 50 were labeled
as 1, while thosewith scores lower than 50were labeled
as 0.

2.5. Image pre-processing
To minimize image noise and enhance sensitivity, as
well as for discretization and the reduction of texture
analysis variations, all image (CT/MRI) intensities
were normalized withinμ± 3σ. Here,μ represents the
mean value of gray levels within the region of interest
(ROI), andσ represents the standard deviation.

A Laplacian of Gaussian (LoG) filter was employed
to enhance performance, which combines a Gaussian
smoothing operator, a standard deviation kernel, and
an isotropic Laplacian filter. This filter is instrumental
in highlighting image details at multiple scales
[28–30]. In this study, LoG filters with sigma values of
0.5, 1, 1.5, and 2were applied to the images.

2.6. Tumor segmentation
For the delineation of regions of interest (ROIs) on CT
and MR T2W images, axial views were selected
(figure 2). This segmentation process was conducted
using the open-source 3D slicer software package (v.
4.10.2). The rectum and bladder walls were contoured
by two experts, one radiologist and one radio-oncolo-
gist, who manually defined the ROIs for each image
slice. Notably, the rectal lumen was excluded from the
analysis, and only the portion of the rectum wall not
encompassed by the gross tumor volume (GTV) was
considered for contouring. The bladder and rectal wall
voxel counts were found to be 5588± 87.55 and 2550
± 75.30, respectively, with average volumes of 9434.57
± 87.55 mm3 and 5242.57± 75.30 mm3. These values
varied based on tumor size and patient anatomy.

2.7. Radiomics features
This study leveraged the pretreatment planning CT
andMRI radiomics features extracted from the rectum
and bladder walls to examine their correlation with
radiation-induced toxicities. These radiomics features
were obtained using the SlicerRadiomics extension of

the 3D Slicer software, which incorporates the PyR-
adiomics library [31]. The radiomics features for the
rectum and bladder walls were categorized into three
groups: first-order, shape-based, and texture features.
The texture features encompassed the following
matrices: gray level run length matrix (GLRLM), gray
level co-occurrence matrix (GLCM), gray level size
zone matrix (GLSZM), gray level dependence matrix
(GLDM), and neighboring gray tone difference matrix
(NGTDM). These features were extracted from both
original and filtered images, and additional details can
be found in the Supplementary file (File 1).

2.8. Feature selection and classification
To identify the most effective radiomics features for
predicting proctitis and cystitis in rectal cancer
patients, various feature selection methods were
employed, as outlined in table 1. These selected radio-
mics features from the planning CT and MR images

Table 1. Feature selection and classificationmethods.

Feature selectionmethod Classificationmethod

Lasso: KNN:

Least Absolute Shrinkage and Selec-

tionOperator

KNearestNeighbor

MRMR: SVM:

MinimumRedundancyMaximum

Relevance

Support VectorMachine

Chi2: LR:

Chi-Square Logistic Regression

Anova: DT:

Analysis of Variance DecisionTree

RFE: RF:

Recursive Feature Elimination RandomForest

SelectPersentile NB:

Naive Bayes

— XGB:

ExtremeGradient

Boosting

— LDA:

LinearDiscriminant

Analysis

Figure 2. Segmentation of the rectumand bladder walls on (a) planningCT, (b) pre-MRIT2Wof the rectal cancer patient in 3D-slicer.
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were specifically related to the occurrence of proctitis
and cystitis.

Subsequently, eight different classification meth-
ods, detailed in table 1, were utilized to construct pre-
diction models. The stratified 5-fold cross-validation
method [32, 33] was adopted, where all features were
incorporated into the feature selection algorithms. A
set of features was chosen for each fold. The selected
features from the first fold were then input into the
respective classifiers for that fold, and the evaluation
parameters of the model were computed. This process
was repeated five times, and the average values of the
evaluation parameters were obtained for both the fea-
ture selectionmethods and classifiers.

For feature selection and classification, Python (v.
3.8) and the scikit-learn package (version 1.0.2) were
employed.

2.9. Robust features against different delineations
Manual segmentation represents a common practice
in the majority of radiomics studies, as it helps ensure

consistency in ROI shapes, a critical factor affecting
the reproducibility of predictive models. To assess the
agreement between readers, the intra-class correlation
coefficient (ICC), defined by equation (1), was used.
ICC quantifies intra-reader agreement based on a two-
way random effect model and has been widely
employed to evaluate the reproducibility of radiomics
features [34].

The calculations of ICC were conducted using R
(v. 1.4.1106) and the IRR package (version 0.84.1). For
the purpose of this study, a radiomics feature was con-
sidered reproducible if its ICC value was equal to or
greater than 0.8 [30].

=
-

+ -( )
( )ICC

MS MS

MS k MS1
1R W

R W

whereMSR stands for ‘the mean square for rows, each
feature value for the two observers’,MSW refers to ‘the
mean square for the residual source of variance’, and k
is the number of observers.

Figure 3.Comparison of themean dosimetric parameters in patients with proctitis and cystitis toxicities.

Table 2.The patient demographic and clinical information.

Characteristic All patients (n= 63) Proctitis (n= 48) Cystitis (n= 39)
Value (%) Value (%) Value (%)

Age (years)Mean± SD (range) Male 62± 12.5 (29 – 81) 62± 11 (29 – 80) 60± 13 (31 – 81)
Female 59± 12.5 (31 – 80) 61± 12 (32 – 80) 57± 11 (35 – 77)

Gender Male 48 (76) 40 (83) 32 (82)
Female 15 (24) 8 (17) 7 (18)

CEA <5 29 (46) 37 (77) 30 (17)
�5 34 (54) 11 (23) 9 (23)

T stage T3 44 (70) 43 (90) 32 (82)
T4 19(30) 5 (10) 7 (18)

Nstage N0 10 (16) 8 (17) 4 (10)
N1 36 (57) 25 (52) 21(54)
N2 17 (27) 15 (31) 14 (36)

5

Biomed. Phys. Eng. Express 10 (2024) 015017 SAbbaspour et al



2.10. Statistics analyses
The statistical analyses were performed using SPSS 26
(Inc., Chicago, USA) and GraphPad Prism 8 software
packages. The value of the area under the receiver
operating characteristic (ROC) curve (AUC), accur-
acy, precision, sensitivity, and specificity were calcu-
lated to evaluate the performance of the generated
models using stratified 5-fold cross-validation.

3. Results

3.1. Patient characteristics and clinical outcomes
Patient demographic and clinical information is
summarized in table 2. The patients were monitored
and evaluated for up to 2 months after undergoing
radiotherapy procedures.

Each patient had 13 dosimetric parameters extrac-
ted from the DVH. To facilitate comparison, figure 3
displays the means of the dosimetric parameters for
the study participants in relation to proctitis and cysti-
tis toxicities. Notably, patients with proctitis exhibited
higher values in the dose parameters compared to
thosewith cystitis.

3.2. Radiomics features
A total of 479 radiomics features, encompassing shape,
first-order, and texture categories, were extracted from
both original and filtered pretreatment planning CT
and MRI T2W scans of the rectum and bladder walls.
Out of these features, 59were selected for analysis.

Figure 4 illustrates the ICC values for the various
radiomics feature categories. The ICC values for the
extracted features between the two physicians ranged
from 0.8 to 0.95, signifying a strong agreement
between the two observers. Notably, the ICC results

for shape features were more influenced by the differ-
ent image segmentations performed by the physicians,
with an ICC value of 0.8.

3.3. Predictive radiomics analyses
The models were constructed using different sets of
features: clinical features alone, CT and MRI radio-
mics features alone (as individual models), and a
combination of clinical, dosimetric, and radiomics
features (as the combined model), utilizing various
machine learning techniques. The optimal methods
and filters for each model are detailed in table 3.
Predictive metrics for each model were computed
using various feature selection methods applied to
both original and filtered images of the rectum and
bladderwalls.

The clinical-only model, employing KNN and
XGB classifiers with Chi2 and MRMR feature selec-
tions, exhibited the highest predictive performance for
proctitis and cystitis, respectively. The pre-MRI T2W
radiomics model for proctitis and cystitis prediction
achieved its highest predictive performance using LR
and LDA classifiers with LoG filter (σ= 2) and original
images. MRMR and Anova feature selection algo-
rithms displayed strong predictive performance for
proctitis and cystitis, respectively.

In the case of the CT radiomics model, SVM and
NB classifiers with LoG filter (σ= 1) and original ima-
ges achieved the highest predictive performance for
proctitis and cystitis, respectively. Lasso feature selec-
tion also demonstrated good predictive performance
for both conditions.

Moreover, the combined MRI model, employing
LDA and DT-RF classifiers with original images and
LoG filters (σ= 0.5 – 1.5), and MRMR and RFE-Chi2

Figure 4. Intraclass correlation coefficients of the two observers for the different radiomics feature categories.
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Table 3. Selectedmethods of individual and combinedmodels for the proctitis and cystitis prediction.

Clinical alone
Pre-MRI PlanningCT

Proctitis Cystitis
Proctitis Cystitis Proctitis Cystitis

Individual

model

Individual

model

Individual

model

Combined

model

Individual

model

Combined

model

Individual

model

Combined

model

Individual

model

Combined

model

Preprocessing Filter — — LOG (σ= 2) Original Original LOG

(σ= 0.5, 1.5)
LOG (σ= 1) LOG (σ= 2) Original LOG

(σ= 0.5, 2)
Models Feature selection

method

Chi2 MRMR MRMR MRMR Anova RFE-Chi2 Lasso MRMR Lasso MRMR-Lasso

Classifier KNN XGB LR LDA LDA DT-RF SVM XGB NB DT-XGB

Parameters AUC (%) 68.33 64.27 71.66 91.0 69.07 96.57% 69.28 90.71 63.73 96.0

Accuracy (%) 68.58 65.25 71.79 90.38 69.78 96.92 69.48 90.0 68.02 96.92

Precision (%) 63.33 55.33 73.03 90.0 74.76 97.14 70.83 88.14 81.66 97.14

Sensitivity (%) 70.47 64.76 70.0 93.33 54.0 96.50 63.33 93.0 40.0 96.0

Specificity (%) 69.66 71.83 73.73 88.09 82.14 97.14 75.23 88.09 92.14 97.14
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feature selections, delivered the highest predictive per-
formance for proctitis and cystitis, respectively. Fol-
lowing closely were the combined CT model using
XGB and DT-XGB classifiers with LoG filters (σ = 2)
and LoG filters (σ = 0.5 – 2), alongside MRMR and
MRMR-Lasso feature selections.

The results indicate that the combined model
based on pretreatment planning CT or MRI outper-
forms the model based on planning CT or pre-MRI
alone in terms of prediction ability.

The AUC values for the individual and combined
models, employing various feature selection methods
for proctitis and cystitis, are represented in a heatmap
in figure 5. Detailed accuracy, precision, sensitivity,
and specificity values for allmodels can be found in the
Supplementary file (File 2).

3.4. Correlation of radiomics features and proctitis/
cystitis toxicities
Out of the sixty-three rectal cancer patients in the
study, here is the breakdown of the occurrence of
proctitis, cystitis, and their combinations, as well as
the number of patients without these toxicities based
on theQLQ-C29 questionnaire:

Patients with proctitis (n= 48)
Patients with cystitis (n= 39)
Patients with both cystitis and proctitis (n= 38)
Patients with no toxicities (n= 25)
The popularity of the selected features for each

method can be found in figures 6 and 7. For proctitis,
MRI_FO_Min (n = 73), MRI_gldm_DEnt (n = 67),
MRI_glszm_LGLZE (n = 87), MRI_glszm_Zvar
(n = 83), MRI_Shape_Elong (n = 80), CT_ FO_Var

Figure 5.Heatmap of theAUCvalue of the individualmodel and combinedmodel for (a) proctitis, and (b) cystitis. ‘SP: select
percentile, C: clinical, RCT (O): radiomics CT of the original image, RCT+C+D (O): radiomics CT+clinical+dosimetric of the
original image, andRMRI (O): radiomicsMRI of original image’.
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(n= 79), CT_glcm_ClustPro (n= 127), CT_glcm_
ClustSh (n = 133), CT_glcm_ClustTen (n = 88),
CT_glcm_SumSq (n= 143), CT_gldm_GLV (n= 63),
CT_glrlm_GLVar (n= 63), and CT_ngtdm_Contrast
(n = 80) from radiomics features, D mean (n = 424),
D40 (n = 291), D60 (n = 263), D70 (n = 327), D80
(n = 196), and D90 (n = 281) from dosimetric fea-
tures, N stage (n= 89), and T stage (n= 82) from clin-
ical features were selected frequently by themost of the
six feature selection algorithms. In addition, the most
significant features selected for cystitis were included
MRI_FO_Min (n= 121),MRI_Shape_Elong (n= 72),
MRI_Shape_MV (n = 80), MRI_Shape_SA (n = 85),
MRI_ngtdm_Coars (n = 208), MRI_glrlm_RLNU
(n= 160), MRI_gldm_DNU (n= 80), MRI_glszm_
GLNU (n = 136), CT_glszm_LarAHGLE (n= 138),
CT_glrlm_RLNU (n= 109), CT_glcm_Corr (n= 92),

CT_glcm_Imc2 (n= 110), CT_gldm_DNU (n = 116),
and CT_glszm_GLNU (n = 66) from radiomics fea-
tures, D mean (n = 479), D min (n = 112), D50
(n = 130), D60 (n = 115), D70 (n = 235), D80
(n = 207), D90 (n = 269), and D100 (n = 192) from
dosimetric features, T stage (n= 108), CEA (n= 65), N
stage (n = 70), WallThick (n = 88), and TD (n = 100)
fromclinical features.

The full names and abbreviations of the features
are provided in the Supplementary file (File 3).

4.Discussion

Medical imaging, as a clinical approach, plays a crucial
role in assessing the side effects of the pathophysiological
and functional processes associated with radiotherapy

Figure 5. (Continued.)

9

Biomed. Phys. Eng. Express 10 (2024) 015017 SAbbaspour et al



[15, 35, 36]. Therefore, identifying suitable predictive
biomarkers for these complications is of great interest to
clinicians and researchers. To the best of our knowledge,
this study is the first to utilize radiomics features to
predict acute rectal and bladder toxicities in locally
advanced rectal cancer by combining different imaging
modalities, namelyCTandMRI.

Feature selection methods are employed to
enhance the performance of predictive models and
prevent overfitting. In this context, we utilized various
classifiers and feature selection techniques to mitigate
biases and uncertainties inherent to each method. The

results revealed that the most effective feature selec-
tion and machine learning methods for the combined
MRI model for proctitis and cystitis were MRMR/
RFE-Chi2 and LDA/DT-RF classifiers with the origi-
nal/LoG filter (σ = 0.5/1.5), respectively. Similarly,
for the combined CT model, MRMR/MRMR-Lasso
and XGB/DT-XGB with LoG filter (σ= 2)/LoG filter
(σ= 0.5/2) yielded favorable results.

It’s worth noting that previous studies have explored
the effects of different feature selectionmethods and clas-
sifiers in the context of rectal cancer treatment response
predictions. For instance, Shayesteh et al [28] investigated

Figure 6.Themost significant radiomics features that correlated with proctitis.
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the impact of various feature selection methods on treat-
ment response predictions for rectal cancer patients and
found that feature selection algorithms improved
machine learning performance, with the Cfs Subset Eval
algorithmproviding thebest results. In another study [34],
LRandSVMexhibited thehighestmodelperformances in
predicting radiotherapy response in locally advanced rec-
tal cancer patients using endorectal ultrasound images.
The controversy surrounding the choice of different clas-
sifiers and feature selection methods suggests that there
arenouniversallypreferred classifiers andmethods [37].

Figures 6 and 7 indicate that the top selected fea-
tures, extracted by the six feature selection methods,

include glcm_SumSq, glcm_ClustSh, glcm_ClustPro,
glcm_ClustTen, glszm_LGLZE, and glszm_Zvar for
the rectalwall. For the bladderwall, themost frequently
selected features are ngtdm_Coars, glrlm_RLNU,
glszm_LarAHGLE, glszm_GLNU, gldm_DNU, and
glcm_Imc2. These findings align with a study by Mos-
tafaei et al [4], which integrated CT-image features,
clinical, and dosimetric parameters of prostate cancer
to predict acute bladder and rectal injuries. They repor-
ted associations between radiomics features such as
Small-dependence Low Gray-level Emphasis, High
Gray-level Zone Emphasis, and Small-area Low Gray-
level Emphasis with proctitis. Furthermore, Large-

Figure 7.Themost significant radiomics features that correlated with cystitis.
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dependence Low Gray-level Emphasis, Gray-level Var-
iance, Short-run Low Gray-level Emphasis, and Small-
area Low Gray-level Emphasis were related to cystitis.
Another study by Hassaninejad et al [15] employed
radiomic features extracted from rectal wall CT and
MR images to predict radiation-induced rectal toxicity
in prostate cancer patients. In their research, features
including Coarseness, GrayLevelNonUniformity, Max-
imum2DdiameterColumn, SmallDependenceHighGray-
LevelEmphasis, MCC, Contrast, and Flatness from the
shape and texture families were identified as significant
features associated with rectal toxicity. Based on the pre-
vious above-mentioned results and the current study, it
canbe concluded that texture features fromvarious famil-
ies, including GLSZM, GLCM, NGTDM, GLDM, and
GLRLM, are predictive features for proctitis and cystitis.
These features provide insights into the homogeneity or
heterogeneity of tissues and can serve as valuable indica-
tors for toxicity prediction. It’s important tonote that var-
iations in radiomics features may be attributed to
differences in the organs under study, image pre-proces-
sing techniques, and imagingmodalities.

The results of our study indicate that combining
radiomics features with clinical and dosimetric fea-
tures can enhance the performance of the model. Spe-
cifically, the combined pre-MRI T2W model for
predicting rectal and bladder toxicities demonstrated
good performance, withmean AUC values of 0.85 and
0.87, respectively. Similarly, the combined CT model
exhibited mean AUC values of 0.83 and 0.87 for pre-
dicting rectal and bladder toxicities. These findings
align with a study by Bourbonne et al [38], who inves-
tigated radiomics features extracted from 3D dose
maps and considered DVH and clinical parameters
for predicting acute and late toxicities in both lungs
and the esophagus. Their results showed that the
combined model (clinical + DVH + radiomics) out-
performed other models, with higher balanced accur-
acy, demonstrating the utility of incorporating
radiomics features in predictivemodeling.

Our study does have some limitations that could
be addressed in future research. The small sample size
of patients is a limitation, and future studies with lar-
ger patient cohorts are recommended to validate the
results. Additionally, our study focused on predicting
acute complications, and further research could
explore the prediction of late effects. Lastly, consider-
ing radiomics features extracted from MR images
obtained during or post-radiotherapy could poten-
tially enhance the predictive ability of the models,
offering a valuable avenue for future investigations.

5. Conclusion

In this study, we evaluated the potential of radiomics
models to provide a quantitative and personalized
assessmentof radiation-induced toxicities in rectal cancer
patients undergoing radiotherapy.We leveraged adiverse

range of feature sources, including clinical data, dosi-
metric parameters, and radiomics features derived from
both pretreatment CT and MR images. These features,
serving as biomarkers, were employed to predict the
developmentof proctitis and cystitis in thesepatients.

Our findings clearly indicate that the incorporation
of clinical and dosimetric parameters significantly
enhanced the predictive capabilities of our models for
rectal and bladder toxicity following radiotherapy. This
improvement was observed when compared to models
based solely on clinical data, as well as those relying
exclusively on pretreatment CT or MRI radiomics fea-
tures. Notably, our results highlight the effectiveness of
the LDA, DT, RF, and XGB classifiers in combination
with feature selection algorithms such as MRMR, RFE,
Chi2, and Lasso, especially when used in conjunction
with the LoG filter. These models have the potential to
aid in personalized decision-making for radiotherapy,
offering valuable insights for patient management.
However, it’s essential to acknowledge that while these
models show promise for clinical application, further
refinement and validation are required. One critical
aspect is the need for a larger training dataset to enhance
the robustness and generalizability of these predictive
models. This will be crucial for ensuring their effective-
ness and reliability in real-world clinical settings.
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