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Abstract
Purpose  This study aimed to examine the robustness of positron emission tomography (PET) radiomic features extracted via 
different segmentation methods before and after ComBat harmonization in patients with non-small cell lung cancer (NSCLC).
Methods  We included 120 patients (positive recurrence = 46 and negative recurrence = 74) referred for PET scanning as a 
routine part of their care. All patients had a biopsy-proven NSCLC. Nine segmentation methods were applied to each image, 
including manual delineation, K-means (KM), watershed, fuzzy-C-mean, region-growing, local active contour (LAC), and 
iterative thresholding (IT) with 40, 45, and 50% thresholds. Diverse image discretizations, both without a filter and with dif-
ferent wavelet decompositions, were applied to PET images. Overall, 6741 radiomic features were extracted from each image 
(749 radiomic features from each segmented area). Non-parametric empirical Bayes (NPEB) ComBat harmonization was 
used to harmonize the features. Linear Support Vector Classifier (LinearSVC) with L1 regularization For feature selection 
and Support Vector Machine classifier (SVM) with fivefold nested cross-validation was performed using StratifiedKFold with 
‘n_splits’ set to 5 to predict recurrence in NSCLC patients and assess the impact of ComBat harmonization on the outcome.
Results  From 749 extracted radiomic features, 206 (27%) and 389 (51%) features showed excellent reliability (ICC ≥ 0.90) 
against segmentation method variation before and after NPEB ComBat harmonization, respectively. Among all, 39 features 
demonstrated poor reliability, which declined to 10 after ComBat harmonization. The 64 fixed bin widths (without any 
filter) and wavelets (LLL)-based radiomic features set achieved the best performance in terms of robustness against diverse 
segmentation techniques before and after ComBat harmonization. The first-order and GLRLM and also first-order and 
NGTDM feature families showed the largest number of robust features before and after ComBat harmonization, respec-
tively. In terms of predicting recurrence in NSCLC, our findings indicate that using ComBat harmonization can significantly 
enhance machine learning outcomes, particularly improving the accuracy of watershed segmentation, which initially had 
fewer reliable features than manual contouring. Following the application of ComBat harmonization, the majority of cases 
saw substantial increase in sensitivity and specificity.
Conclusion  Radiomic features are vulnerable to different segmentation methods. ComBat harmonization might be considered 
a solution to overcome the poor reliability of radiomic features.
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Introduction

Cancer is a leading cause of death worldwide and a signifi-
cant barrier to increasing life expectancy [1]. According to 
the 2019 report World Health Organization (WHO) [2], the 

first or second primary reason for mortality in people under 
70 is cancer in most parts of the world. A total of 19.3 and 10 
million cancer incidences and cancer-related deaths occurred 
in 2020, respectively [3]. Among the different cancer types, 
the second most frequent type of cancer is lung cancer, with 
2,206,771 new cases (11.4% of all cancers) and the highest 
number of deaths, with 1,796,144 patients (18% of all) [3].

In recent years, positron emission tomography (PET) 
imaging has become widely used for cancer diagnosis and is 
currently considered the gold standard for detecting solitary 

Habib Zaidi and Mohammad Reza Ay are senior authors and have 
contributed equally to this work.

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7559-5297
http://crossmark.crossref.org/dialog/?doi=10.1007/s12149-024-01923-7&domain=pdf


	 Annals of Nuclear Medicine

pulmonary nodules [4]. In recent years, radiomics, a com-
putational approach using data mining techniques, received 
considerable attention in medical imaging analysis, particu-
larly in the context of clinical oncology. Previous studies 
proved the capability of radiomics as a powerful tool in 
clinical diagnosis [5], prognosis, and outcome prediction 
of cancer and other diseases [6, 7] using statistical analyses 
[8], machine learning classifiers [9–11], and deep neural 
networks [12, 13].

A considerable number of radiomic features are extracted 
[14], leading to the development of multiple pipelines and 
packages for their extraction, with many of them being 
compliant with the Image Biomarker Standardization 
Initiative (IBSI) guidelines [15]. This includes the 
Pyradiomics package in Python [16] and SERA in MATLAB 
[17]. Nevertheless, radiomic features suffer from low 
repeatability (the degree to which the same measurement 
or computation yields the same results under identical 
conditions) and reproducibility (the results can be duplicated 
when the experiment or measurement is repeated under 
different conditions) since a combination of various factors 
[18, 19], including image acquisition [20], reconstruction 
algorithms [21, 22], image pre-processing [23], and image 
segmentation methods [18], highly affect radiomic features. 
Among these factors, different segmentation methods may 
impact the radiomic features to a large extent [18]. Although 
the effect of contouring variability has been recognized for 
its large impact on PET radiomic features [24], research 
focusing on the reproducibility of PET radiomic features 
with respect to variability of segmentation methods is 
relatively limited, especially when considering the influence 
of other factors, including image reconstruction technique 
and variability arising from the use of multi-center studies 
[25, 26]. Hence, a comprehensive examination of the 
impact of various segmentation methods, including manual, 
semi-automatic, and fully automated segmentation, on the 
extracted radiomics features is still required. Yang et al. [27] 
examined PET radiomics variability affected by manual 
segmentations in lung cancer. They concluded that the 
Gray Level Dependence Matrix (GLDM) family showed 
the highest performance in terms of reproducibility and 
harmonization against contouring variability.

Several potential solutions have been reported to 
overcome the low reproducibility of radiomic features 
against various influencing factors. Among these solutions, 
selecting robust features [19] and ComBat harmonization 
[28] have demonstrated a promising ability to boost the 
repeatability and reproducibility of the extracted radiomic 
features. To date, a few studies assessed the impact of 
automated segmentation on PET radiomic features [29, 30]. 
In the context of ComBat harmonization, the alignment 
of radiomic features is anticipated because of its inherent 
computational approach. While this outcome aligns with 

expectations, it is important to show that such harmonization 
also affects classification outcomes and how it is going to be.

This study aims to examine how various segmentation 
strategies, including automated, semi-automated, and 
manual contouring, affect PET radiomic features in lung 
cancer. A harmonization method was applied to reduce 
the variability of the features and calculated the intraclass 
correlation coefficient (ICC) for each radiomic feature with 
and without considering the harmonization effect to select 
robust features against various segmentation methods and 
endorse the impact of harmonization on the variability 
of the features. In addition, to examine the impact of 
ComBat harmonization on the performance of a machine 
learning (ML) classifier, Support Vector Machine (SVM) 
with a Linear Support Vector Classifier (LinearSVC) 
feature selection technique was implemented to predict the 
recurrence in NSCL subjects.

Materials and methods

Patients’ demographics and PET/CT data acquisition

Our study used PET images from a cohort of 120 patients, 
with 46 being recurrence positive and 74 being recurrence 
negative. These data were gathered from March 2018 
to April 2021. The local ethics committee approved the 
study protocol and consent forms were waived given 
the retrospective nature of the study. All patients had 
biopsy-proven non-small cell lung cancer (NSCLC), and 
positive or negative recurrence. They underwent PET/CT 
scanning [GE Discovery 690 PET/CT scanner (General 
Electric Healthcare, USA)] as part of their routine 
workup. Patients fasted for at least 6 h prior to injection 
of 18F-Fluorodeoxyglucose (18F-FDG). The patients were 
instructed to fast for a minimum of 8 h prior to the scan. 
They were then administered an average activity of 309.26 
MBq (138.90–572.25 MBq) of 18F-FDG. The average 
uptake time observed was 66.58 min (23.08–128.90 min). 
The acquisition time per bed position was consistently set 
at 3 min for all studies. Moreover, anatomical localization 
and attenuation correction were performed using low-
dose CT imaging. PET data were reconstructed using the 
ordered subset expectation maximization (OSEM) iterative 
algorithm with 3 iterations and 18 subsets, leading to an 
image matrix of 256 × 256, with 3.906 mm2 pixel size. A 
Gaussian post-reconstruction filter with a full width at half 
maximum (FWHM) of 4.5 mm was applied. All the images 
were reconstructed using the same algorithm with the same 
number of iterations and subsets to minimize the effects of 
reconstruction on the results.
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Image segmentation

Numerous segmentation techniques were applied to PET 
images, ranging from manual contouring by a PET physi-
cist with 15 years of experience (verified by another medical 
physicist with 10 years of experience), to semi-automated 
and automated methods, including K-means [31], watershed 
[32], FCM [33], iterative thresholding (IT)-based segmen-
tation [34] with different thresholds (40, 45, and 50%), RG 
[35], and local active contour (LAC) [36] (Fig. 1).

In K-means segmentation, each image pixel is considered 
a feature point with a specific position. The basic K-means 
algorithm then randomly assigns this cluster site selection 
within a multidimensional subspace. Every spot is assigned 

to the cluster with the subjective mean vector adjacent to it. 
The process is continued until the positioning of the class 
mean vectors does not show a significant difference over the 
iterations [37].

FCM is based on a clustering approach whereby a sample 
is divided into multiple groups, upon each data point relating 
to each cluster to some extent. For instance, measurements 
at the center of a group will have a significant degree 
of membership in that cluster. In contrast, a data point 
considerably farther from a cluster would have a low grade 
of membership in that cluster [38].

The concept behind RG algorithms is that nearby 
pixels within a region have significant similarities. A 
typical operation involves comparing one pixel with its 

Fig. 1   Multiple segmentation 
algorithms were applied in the 
current study. The first from the 
left is the central slice of PET 
images, the second is viewed 
anteriorly, the third is upright, 
and the fourth is downward
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neighbors. If a similarity condition is met, the pixel can 
be assigned to any or all of the cluster’s neighbors. The 
choice of similarity criterion is critical, as noise impacts 
the outcome in every case [39].

The active contour model utilizes the image energy 
limitations and compels one to divide it into areas of 
interest. An active contour creates distinct boundaries 
or curves for each segment of the target item [40]. The 
contour is grouped into many categories depending 
on various requirements, including geometric models, 
gradient vector flow, and balloons [41].

The watershed segmentation algorithm is a well-
established technique where the image is treated as a 
topographical landscape, with the grayscale intensity 
representing the height of the terrain. It identifies ‘markers’ 
or local minima in the landscape and floods the area 
from these marker points, and constructs ‘dam’ barriers 
at places of watershed lines, effectively segmenting the 
image into distinct regions [42].

To distinguish areas of interest within an image, IT, a 
complex image processing technique is employed that uses 
an iterative modification of a pixel intensity threshold. 
Beginning with an initial threshold, the procedure adjusts 
the threshold based on the histogram of pixel intensities 
in a cycle of repeated calculations until a convergence 
condition is satisfied, thus optimizing the separation of 
target and background regions. This dynamic approach 
handles a variety of image settings and contrasts and 
intensity fluctuations well [43].

PET image pre‑processing and feature extraction

The crucial step in this part involved the application of 
image discretization and wavelet transforms to pre-processed 
images. Image discretization, in this context, refers to the 
conversion of continuous image data into a finite set of inten-
sity levels. This technique aids in reducing the complexity of 
the image data, thereby simplifying further analyses. Coif1 
wavelet transformations were then employed to provide 
multi-resolution analysis of PET images. Wavelet decompo-
sitions, including LHH, HLL, LLL, HHL, HHH, HLH, LLH, 
and LHL, were used in this process (Fig. 2). These labels 
represent various forms of wavelet transform coefficients 
corresponding to different frequency bands and orientations: 
‘L’ signifies low-pass filtered elements (approximations), 
and ‘H’ represents high-pass filtered features (details), in 
either horizontal, vertical, or diagonal directions. The appli-
cation of these various wavelet decompositions allowed for 
the extraction of different texture features, capturing various 
elements of image heterogeneity.

From each region of interest (ROI) in each image 
with fixed 64 bin width and an isotropic voxel size of 
1 × 1 × 1 mm3, 749 radiomic features were extracted using 
the Image Biomarker Standardization Initiative (IBSI) [15] 
compliant Pyradiomics package [16] in Python. These 
features consisted of four sets, including shape-, first-, 
second-, and higher-ordered features, comprising Gray Level 
Run Length Matrix (GLRLM), Gray Level Co-occurrence 
Matrix (GLCM), Gray Level Dependence Matrix (GLDM), 
and Gray Level Size Zone Matrix (GLSZM) feature sets. A 

Fig. 2   Representative example of wavelet images with multiple wavelet decompositions (LHH, HLL, HHL, LLL, HHH, HLH, LHL, and LLH) 
without any filter
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total of 6741 radiomic features were extracted from each 
image, comprising 9 ROIs from 9 segmentation methods 
applied in the current study. The name, set, and family of the 
features are listed in Supplementary Table 1.

In our study, the response maps were created following 
the resampling process, adhering to the recommendations 
outlined by the IBSI. This approach ensures the maintenance 
of image data quality, especially when a higher-order 
interpolator, rather than a linear one, is employed during 
resampling. This process allows for more accurate wavelet 
response mapping, consequently resulting in more reliable 
and precise extraction of radiomic features.

Non‑parametric empirical Bayes (NPEB) ComBat 
harmonization

Before investigating the effect of different segmentation 
algorithms on radiomic features, non-parametric empirical 
Bayes (NPEB) harmonization was applied to the features. 
We used this harmonization method to decrease the features’ 
variability due to various segmentation methods explored 
in the current study [44]. NPEB ComBat harmonization 
is a widely used method initially developed for genomics 
to correct batch effects in high-dimensional data, but has 
been used in numerous fields, including PET radiomics 
analysis. At its core, ComBat uses an experimental Bayes 
framework to predict and adjust for variations across 
different batches or data sources (in this study, radiomic 
features). This is achieved using a model that estimates 
both the location (mean) and scale (variance) parameters for 
each batch, effectively normalizing the data across batches. 
The NPEB adaptation of ComBat extends this approach by 
not presuming a specific distribution for the data, which 
is particularly beneficial in diverse datasets, such as those 
in PET radiomics. This lack of assumption regarding 
data distribution makes NPEB ComBat more flexible and 
applicable to a wider range of scenarios [44]. In the context 
of PET radiomics, NPEB ComBat harmonization makes 
sure that features extracted from images acquired under 
different conditions or devices are comparable, leading to 
more reliable analyses [61].

However, it is important to discuss potential drawbacks 
of using ComBat and NPEB in PET radiomics. One 
limitation is the potential over-correction of data, which 
could lead to the loss of biologically meaningful variations 
among different patient groups or conditions. Another 
concern is that both techniques assume that batch effects 
are the primary source of variability in the dataset, which 
might not always be the case. This assumption can lead to 
misinterpretation of the data if other sources of variability 
are present but not accounted for.

Statistical analysis

In the current study, we used the ‘irr’ library (version 
0.84.1) for statistical analysis [45–47]. For each radiomic 
feature, the intraclass correlation coefficient (ICC) was 
determined using R version 4.0.4 (The R Foundation, 
Vienna, Austria) both before and after harmonization. 
Considering Koo and Li’s guideline [48], two-way random 
effects with complete agreement and multi-raters were 
conducted to calculate the ICC. An ICC of less than 0.5, 
0.5 ≤ ICC < 0.75, 0.75 ≤ ICC < 0.9, and ICC ≥ 0.9 reflect low, 
rational, promising, and outstanding reliability, respectively. 
The Kruskal–Wallis (KW) test, a non-parametric test, was 
utilized to examine an independent dataset and assess 
differences between various segmentation methods used in 
this study. The KW test can be applied to distinguish whether 
there are significant differences in a sequential or continuous 
dependent variable among the independent variable of the 
data set (segmentations in the current study). As the goal 
of this study was to investigate the variability of features 
without any form of pre-processing, we did not normalize 
images or features since normalization might introduce a 
confounding factor for calculating the variability of radiomic 
features (using ICC).

Feature selection and ML classifier

An in-house-developed ML classifier and feature selection 
pipeline from Scikit-Learn library was implemented in 
Python.

Random Under Sampler

To address the issue of imbalance in our datasets, a 
Random Under Sampler was employed [49]. This method 
strategically reduces the number of examples in the majority 
class to match the quantity in the minority class, aiming to 
create a balanced distribution of classes. By doing so, the 
likelihood of the model’s overfitting to the majority class 
is reduced, and its ability to learn and predict the minority 
class is improved. The rationale behind using an under-
sampling technique is to force the model to focus on the 
more complex patterns that are characteristic of the minority 
class, thereby potentially uncovering subtle but important 
signals that could be overlooked in an imbalanced dataset.

Feature selection

For feature selection, a Linear Support Vector Classifier 
(LinearSVC) with L1 regularization was used. This 
approach regulates feature sparsity by assigning zero 
to coefficients of non-informative features, selecting 
only the most relevant features [50]. The C parameter in 



	 Annals of Nuclear Medicine

LinearSVC feature selection methods controls the trade-
off between margin maximization and classification error 
minimization. As the C parameter decreases, it emphasizes 
regularization and feature sparsity [51]. In this study, the 
C parameter was equal to 0.05, which is considered low. 
The penalty parameter is set to l1 for L1 regularization, 
which contributes to selecting important features. The dual 
parameter is set to alse to accommodate L1 regularization 
as well. In the end, at most 10 features were selected 
(max_features = 10).

ML classifier

An SVM classifier was implemented to predict recurrence 
in NSCLC patients [52]. SVMs, as supervised learning 
methods, aim to discover an ideal hyperplane that 
separates various classes in a high-dimensional feature 
space [52] with the following parameters: C (regularization 
parameter): larger C values may contribute to better 
training set accuracy, but too large values might cause 
overfitting. To prevent over/underfitting biases, we used 
a C value of 1.0, which is considered moderate. Kernel 
type: As medical data and binary classification problem 
like predicting recurrence in NSCLC, which is considered 
a non-linear high-dimensional space, we used an RBF 
kernel. Class weight: Although we used a Random Under 
Sampler method to mitigate the impact of imbalanced 
dataset to fit our results better, we used imbalanced class 
weight in our parameters as well to maximize the model’s 
performance and accuracy in the presence of imbalanced 
data, a common challenge in medical datasets and 
predictive modeling.

Fivefold cross‑validation

Fivefold nested cross-validation was performed using 
StratifiedKFold with ‘n_splits’ set to 5. This approach 
ensures the dataset is divided into balanced subsets for 
training, evaluation, and validation on unforeseen datasets. 
Nested cross-validation required two cross-validation 
steps: an outer loop and an inner loop [53]. Outer loop: 
For model assessment, the data were divided into fivefold. 
While the model was trained on the remaining data, each 
fold is utilized as a hold-out validation set. Inner loop: The 
data were further subdivided into training and validation 
subsets inside each fold of the outer loop. This inner loop 
was utilized to fine-tune the hyperparameters and choose the 
optimum model configuration. The results provided in this 
study are for the outer loop of the nested cross-validation, 
which was chosen for evaluating the model’s performance 
on different validation sets [53].

Results

Figure 3A shows a bar plot representing the ICC values 
of the different feature sets extracted in this study through 
various image segmentation techniques, including K-means, 
watershed, FCM, IT (40, 45, and 50 percent), RG, LAC, and 
manual contouring, applied to PET images. In this study, all 
analyses were performed twice, i.e., with and without apply-
ing the NPEB ComBat harmonization. Feature sets include 
64 fixed bin widths (without any filter) and wavelets with 
various wavelet decompositions (LHH, HLL, HHL, LLL, 
HHH, HLH, LHL, and LLH). In this figure, the ICC value 
is categorized into four groups; ICC < 50% (low robust-
ness, dark red), 50% ≤ CC < 75% (medium robustness, light 
red), 75% ≤ CC < 90% (qualified robustness, light blue), 
ICC ≥ 90% (high robustness, dark blue). Figure 3A high-
lights the influence of image segmentation variability on 
radiomic features after harmonization.

Figure 3B is a bar plot indicating the percentage of ICC 
radiomic features family extracted in this study, including 
shape, FO, GLDM, GLRLM, and GLSZM, after applying 
different PET image segmentation methods. The ICC 
percentage with and without NPEB ComBat harmonization 
depicts the effect of harmonization on radiomic features’ 
repeatability. Figure 3B illustrates the percentage of the 
four examined belonging to diverse radiomic families. 
The beneficial impact of ComBat harmonization is clear 
where the number of robust features surged after using the 
harmonization algorithm. It is evident from Fig. 3B that 
first-order statistic features showed the best performance 
with 61 and 77% robust features before and after ComBat 
harmonization, followed by GLRLM and GLDM. Although 
NGTDM (5%), shape (7%), and GLCM (11%) feature 
families showed the least robustness before ComBat 
harmonization, NGTDM (68%) and shape (53%) feature 
families surged in the number of repeatable features, whereas 
GLCM (20%) did not respond to ComBat harmonization.

Supplemental Fig.  1 shows a box plot reflecting a 
regulated method of visualizing statistical parameters 
distribution. This plot illustrates the ICC values of 
various features set in the present study, after (upper 
panel) and before (lower panel) applying NPEB ComBat 
harmonization. This is a box plot showing the range of 
ICC values concentration and distribution between 0 and 
1, which belongs to various feature sets extracted before 
and after ComBat harmonization. It is apparent that after 
ComBat harmonization, the box plot of all feature sets 
focused (area within the first quartile (Q1/25th Percentile) 
and third quartile (Q3/75th Percentile) narrowed) on the 
higher (ICC) value. Besides, ICC value distribution after 
ComBat harmonization shrank. Wavelet HHH and LHH’s 
ICC value distribution was more than the other feature sets.
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Figure 4 is a probability density distribution (PDD) of 
ICC values, i.e., the distribution of ICC values belonging to 
radiomic features set when applying diverse segmentation 
and harmonization methods. The density of each chart in the 
PDD figure depicts the probability of features’ robustness 
against various segmentations. Consequently, the further a 
density concentration of a graph moves to the right (close to 
1), the more likely the feature set is robust. The upper image 
represents the PDD of the ICC values after applying NPEB 
ComBat harmonization to the radiomic features. The PDD of 
the ICC values before applying NPEB ComBat harmoniza-
tion is shown in the lower panel of Fig. 4. It can be seen that 
implementing harmonization will push the ICC values to the 
right (equal to 1) and narrow the density distribution.

The results of the (KW) p value tests through a num-
ber of significant (red) and non-significant (blue) radiomic 
features belonging to each feature set before and after 
NPEB ComBat harmonization are depicted in Fig. 5. The 
red color indicates those features with statistically signifi-
cant differences. According to the results of the KW test, 
wavelet-based radiomic features had much more significant 

radiomic features than the original feature set before Com-
Bat harmonization. However, after ComBat harmonization, 
the number of non-significant radiomic features increased 
considerably, whereas wavelet LLH-based features had the 
highest number of non-significant radiomic features after 
ComBat harmonization.

Table  1 depicts the top 20 robust radiomic features 
against segmentation variability. The radiomic features 
are arranged in descending order based on the ICC, before 
and after NPEB ComBat harmonization. First-order (FO) 
statistic features were not considered in the present table, as 
most FO features have an ICC ≥ 0.95 (extremely repeatable) 
against segmentation. Complete information about feature 
variability is reported in Supplemental Table 2 where the 
radiomic features are arranged from the highest to lowest 
ICC.

Figure 6A represents the ICC bar plot of various radiomic 
features between manual contouring and other semi-auto-
mated and automated segmentations examined in this study. 
It is evident that the watershed showed the highest reproduc-
ibility with 74% robust features, followed by region-growing 

Fig. 3   ICC percentage bar plot 
of the different radiomic feature 
sets depicting different radiomic 
features’ family extracted in 
this study A before and B after 
NPEB ComBat harmonization. 
The ICC values were classified 
into 4 categories: ICC < 50% 
(dark red), 50% < ICC < 75% 
(light red), 75% < ICC < 90% 
(light blue), ICC > 90% (dark 
blue). The feature sets include 
64 fixed bin widths and 
wavelets with multiple wavelet 
decompositions (LHH, HLL, 
HHL, LLL, HHH, HLH, LHL, 
and LLH) without any filter. 
Various image segmentation 
techniques were applied to PET 
images, including K-means, 
Watershed, FCM, IT (40, 45, 
and 50% thresholds), RG, LAC, 
and manual contouring
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and K-means with 26 and 18% robust features, respectively. 
Local active contour had the lowest number of robust features 
(4%). In Fig. 6B, we indicate the PDD of the ICC between 

manual contouring and other semi-automated and automated 
segmentation techniques examined in this study. The con-
centration of watershed segmentation near 1 indicates the 

Fig. 4   Probability density dis-
tribution (PDD) of ICC values 
before (lower panel) and after 
(upper panel) applying NPEB 
ComBat harmonization on the 
radiomic features for the dif-
ferent feature sets including 64 
fixed bin widths and wavelets 
with multiple wavelet decompo-
sitions (LHH, HLL, HHL, LLL, 
HHH, HLH, LHL, and LLH), 
without any filter. The higher 
the focus of a graph’s density 
toward larger values (close to 
1), the more robust the feature is 
to the effective factor

Fig. 5   Kruskal–Wallis (KW) p value bar plot of the extracted features 
before and after NPEB ComBat harmonization. The various feature 
sets include 64 fixed bin widths and wavelets with multiple wave-

let decompositions (LHH, HLL, HHL, LLL, HHH, HLH, LHL, and 
LLH) without any filter. Each feature set’s number of significant (red) 
and non-significant (blue) features is depicted
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robustness of the radiomic features extracted from this con-
tour. A non-parametric KW test was also conducted to exam-
ine the impact of various segmentation methods on radiomic 
features (Supplemental Fig. 2). Moreover, the heatmap of the 

ICC results before and after NPEB ComBat harmonization is 
plotted in Supplemental Fig. 3.

The impact of harmonization on the reliability of radi-
omic features is remarkable, and the percentage of the fourth 

Table 1   Top 20 high performing features in terms of robustness against the diverse segmentation methods, after (upper part) and before (lower 
part) applying NPEB ComBat harmonization

First-order features were eliminated (most FO features were highly repeatable (ICC ≥ 0.95) against segmentation)

Radiomic features after ComBat harmonization ICC value

wavelet-LLH _ glrlm _ Long Run Low Gray Level Emphasis 0.978
Original _ glszm _ Large Area Emphasis 0.978
Original _ glszm _ Large Area Low Gray Level Emphasis 0.978
Original _ glszm _ Large Area High Gray Level Emphasis 0.978
wavelet-LLL _ glszm _ Large Area Emphasis 0.978
wavelet-LLL _ glszm _ Large Area Low Gray Level Emphasis 0.978
wavelet-LLL _ glszm _ Large Area High Gray Level Emphasis 0.978
wavelet-LLH _ glrlm _ Run Variance 0.977
wavelet-LHL _ glrlm _ Long Run Low Gray Level Emphasis 0.974
wavelet-LLH _ glrlm _ Long Run Emphasis 0.973
wavelet-LHL _ gldm _ Dependence Non-Uniformity Normalized 0.969
wavelet-LHL _ glrlm _ Run Variance 0.967
wavelet-HLL _ glszm _ Large Area Low Gray Level Emphasis 0.967
wavelet-LHL _ glrlm _ Long Run Emphasis 0.964
wavelet-HLL _ glszm _ Zone Variance 0.964
wavelet-LHL _ gldm _ Large Dependence Emphasis 0.964
wavelet-LHL _ glrlm _ Run Percentage 0.962
wavelet-HLL _ glszm _ Large Area Emphasis 0.960
wavelet-LHL _ gldm _ Dependence Entropy 0.958
wavelet-HHH _ glrlm _ Long Run High Gray Level Emphasis 0.956

Radiomic features before ComBat harmonization ICC value

wavelet-LLH_ glrlm _ Run Variance 0.967
wavelet-LHL _ glrlm _ Long Run Low Gray Level Emphasis 0.964
wavelet-LLH _ glrlm _ Long Run Emphasis 0.962
wavelet-LHL _ gldm _ Dependence Non-Uniformity Normalized 0.960
Original _ glszm _ Large Area Emphasis 0.956
Original _ glszm _ Large Area Low Gray Level Emphasis 0.956
Original _ glszm _ Large Area High Gray Level Emphasis 0.956
wavelet-LLL _ glszm _ Large Area Emphasis 0.956
wavelet-LLL _ glszm _ Large Area Low Gray Level Emphasis 0.956
wavelet-LLL _ glszm _ Large Area High Gray Level Emphasis 0.956
wavelet-HLL _ glszm _ Large Area Low Gray Level Emphasis 0.955
wavelet- LHL _ glrlm _ Run Variance 0.952
wavelet-HLL _ glszm _ Zone Variance 0.951
wavelet-HHH _ gldm _ Dependence Non-Uniformity Normalized 0.948
wavelet-LHL _ glrlm _ Long Run Emphasis 0.948
wavelet-LHL _ gldm _ Dependence Entropy 0.948
wavelet-HLL _ glszm _ Large Area Emphasis 0.947
wavelet-LLH _ gldm _ Dependence Non-Uniformity Normalized 0.946
wavelet-HHH _ gldm _ Dependence Entropy 0.944
wavelet-LHH _ gldm _ Dependence Non-Uniformity Normalized 0.943
wavelet-LLH _ glrlm _ Run Variance 0.967
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group (ICC > 90%) was raised in all feature sets. The origi-
nal features set (64 fixed bin widths without any filter) and 
wavelet (LLL) set showed the highest repeatability before 
ComBat harmonization. After ComBat harmonization, these 
two feature sets showed dramatic growth in terms of the per-
centage of highly reliable (ICC > 90%) features to more than 
70%, and there was no feature with an ICC less than 50%. 
The third place of robustness against segmentation variation 
goes to wavelet (LHL) with a 58% robust feature (out of 92).

Table 2 summarizes the performance of the different seg-
mentation techniques in predicting recurrence in patients 
with NSCLC before and after ComBat harmonization. 
Before ComBat harmonization, manual contouring showed 
the highest performance (accuracy: 0.850, AUC: 0.850, 
sensitivity: 1, specificity: 0.700), followed by K-means 
(accuracy: 0.825, AUC: 0.825, sensitivity: 0.700, specific-
ity: 0.950). After ComBat harmonization, watershed with a 
big jump showed the highest performance (accuracy: 0.875, 
AUC: 0.875, sensitivity: 0.800, specificity: 0.950) followed 
by manual contouring with similar results as before ComBat 

(accuracy: 0.850, AUC: 0.850, sensitivity: 1, specificity: 
0.700) and iterative threshold 50% (accuracy: 0.825, AUC: 
0.825, sensitivity: 1, specificity: 0.750). As is evident from 
Table 2, although downward trend might happen after Com-
Bat harmonization, which is dependent on the segmentation 
method, some of the results improved after ComBat harmo-
nization, especially sensitivity and specificity, which show 
improvement in their ability to correctly identify positive 
cases (sensitivity) and negative cases (specificity).

Discussion

A large number of studies (over 2600 articles/year in 2022 
according to PubMed) have shown the great potential of 
radiomics analysis in clinical diagnosis, prognosis, and 
outcome prediction. However, several factors might affect 
radiomic features’ robustness, including the segmentation 
method, which impacts radiomic features to a large extent. 
While all segmentation algorithms have a unique goal, 

Fig. 6   Bar plot (A) and PDD 
(B) of the results of the ICC 
metric for radiomic features 
between manual contouring and 
other semi-automated and auto-
mated PET image segmentation 
techniques implemented in the 
current study
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contouring the ROI, slight changes in the defined contours 
significantly impact the extracted radiomic features.

In the current study, 120 patient images were used to 
assess 9 segmentation methods belonging to 3 categories, 
namely automated, semi-automated, and manual contouring 
applied to PET images. The repeatability of radiomic 
features has always been an issue in radiomic studies. 
A number of factors might affect radiomic features 
individually and collectively based on data acquisition, 
image reconstruction, and image processing scenarios. 
Altogether, these factors have a significant impact on 
radiomic features. Various strategies have been proposed to 
tackle this challenge, including but not limited to selecting 
robust features or using a harmonization method to reduce 
the variability of the features. In this work, the impact of 
segmentation methods was explored. We attempted to 
eliminate or minimize other factors. For instance, all images 
were reconstructed using the same reconstruction algorithm. 
At the same time, the NPEB method was implemented to 
harmonize the radiomic features and decrease the impact of 
factors affecting their robustness (segmentation). To further 
analyze the impact of ComBat harmonization on classifier 
metrics, a ML pipeline was implemented on the dataset 
before and after ComBat harmonization.

It is evident from Fig. 1 that the LAC often results in 
smaller shapes compared to manual segmentation. This 
might indicate that LAC is not capturing all the relevant 
ROI. The other methods, although automated, seem to 

produce shapes that are closer in size to the manual tech-
nique, which suggests they might be more reliable for repli-
cating expert-level segmentation. The ‘Watershed’ method, 
in particular, shows a unique pattern, differing slightly in 
shape from the manual method.

A number of strategies were proposed to overcome the 
poor reliability of radiomic features; selecting robust features 
against the different factors influencing their relevance is the 
principal one. Another solution is the use of a harmonization 
method, e.g., ComBat. These two solutions were explored in 
this study. Altogether, 749 radiomic features were extracted 
from each segmented region. To quantify the magnitude of 
variability of each radiomics feature, the ICC was measured 
for each one. All analyses were performed twice before 
and after ComBat harmonization. Radiomic features with 
an ICC of more than 0.95 were considered robust with 
excellent repeatability. Even though contouring variability 
significantly impacts radiomic features, few studies have 
addressed this issue [27, 30, 54].

Yang et  al. [27] examined the effect of manual 
segmentation on PET radiomic features in patients with lung 
cancer. In their study, ten radiation oncologists segmented 
PET images to extract 25 texture features from each ROI. 
Gray-Level Neighborhood Difference Matrix (GLNDM) 
features showed the highest performance in terms of 
reliability, whereas GLRLM and GLSZM radiomic family 
showed the highest robustness. The difference might be 
explained by the fact that in our study, we examined fully 

Table 2   Results of LinearSVC 
feature selection technique 
and SVM machine learning 
classifier of different PET 
segmentation techniques before 
(upper table) and after (lower 
table) ComBat harmonization 
with improved values are 
highlighted in green while 
decreased values are highlighted 
in red

Segmentation technique Accuracy AUC Sensitivity Specificity

Region_Growing 0.725 0.725 0.600 0.850

Kmeans 0.825 0.825 0.700 0.950

Local_Active_Contour 0.700 0.700 0.350 1

Iterative_Threshold_40% 0.675 0.675 0.600 0.750

Iterative_Threshold_45% 0.775 0.775 0.950 0.600

Iterative_Threshold_50% 0.775 0.775 0.800 0.750

Manual contouring 0.850 0.850 1 0.700

Watershed 0.775 0.775 1 0.500

Fuzzy_C_means 0.775 0.775 0.800 0.750

Lower table (after ComBat harmonization):

Segmentation technique Accuracy AUC Sensitivity Specificity

Region_Growing 0.725 0.725 0.600 0.850

Kmeans 0.750 0.750 0.550 0.950

Local_Active_Contour 0.650 0.650 0.650 0.650

Iterative_Threshold_40% 0.775 0.775 0.550 1

Iterative_Threshold_45% 0.825 0.825 1 0.650

Iterative_Threshold_50% 0.850 0.850 1 0.750

Manual contouring 0.850 0.850 1 0.650

Watershed 0.875 0.875 0.800 0.950

Fuzzy_C_means 0.700 0.700 0.750 0.650
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automated and semi-automated segmentations in addition 
to manual segmentation. In another study, Bashir et  al. 
[55] studied the impact of multiple image segmentation 
algorithms, including fuzzy locally adaptive Bayesian 
(FLAB), fixed thresholding (40%), and manual delineation 
(performed by three physicians) on PET radiomic features 
in 53 patients with NSCLC. They reported that 40% fixed 
thresholding and manual contouring yielded the smallest 
and largest volume measurements. Moreover, 62, 27, and 20 
radiomic features showed ICC > 0.85 for fixed thresholding, 
FLAB, and manual contouring, respectively. Leijenaar et al. 
[56] examined the repeatability of radiomic features against 
inter-observer variability of manual segmentation and 
test–retest in PET/CT images of 27 NSCLC patients. Five 
physicians manually segmented PET images to extract 98 
radiomic features from each ROI. The results of their study 
demonstrated that GLCM texture features achieved the best 
performance in terms of reliability. However, compared to 
our study, GLCM-based radiomic features did not show a 
good performance in terms of reliability, since only 11% and 
18% among them showed excellent reliability (ICC > 0.9). 
In a CT radiomics study, Pavic et al. [30] investigated the 
impact of contouring variability on an NSCLC dataset. They 
reported that 63 out of the 105 extracted radiomic features 
were robust against delineation variability.

It was not unexpected to observe that the LLL wavelet 
response maps generate substantially more stable features 
compared to other response maps. The LLL wavelet 
essentially provides a low-pass filtered rendition of the 
original image, thereby eliminating noise and other abrupt 
transitions. This results in a cleaner, more coherent image 
that inherently lends itself to the extraction of robust and 
consistent features.

The application of ComBat harmonization to enhance the 
reproducibility of radiomic features in multi-center studies 
has been examined in a number of previous studies [57–60]. 
Furthermore, Leithner et al. [61] examined the impact of 
ComBat on tissue classification using PET radiomics in a 
PET/MRI study, where they reported that ComBat is useful 
in multi-center studies. Shiri et al. [62] demonstrated that 
ComBat harmonization improved gene mutation status 
prediction in non-small cell lung cancer. Another study 
examined the impact of feature harmonization on radio-
genomics analysis for the prediction of KRAS and EGFR 
mutations from non-small cell lung cancer from PET/CT 
images [63]. It was reported that ComBat harmonization 
had a significant impact on the prediction. Despite the fact 
that radiomic features are potent instruments for prognosis, 
diagnosis, and outcome prediction, their reproducibility and 
repeatability have constantly been scrutinized owing to their 
sensitivity to several factors. Our results are in agreement 
with previous findings who reported that implementing 
ComBat harmonization might have a significant impact on 

the repeatability and reproducibility of radiomic features not 
only in multi-center studies but also in a single-site study 
where other factors, i.e., segmentation methods, may affect 
radiomic features.

Manual contouring produced the best results before 
ComBat harmonization (accuracy: 0.850, AUC: 0.850, 
sensitivity: 1, specificity: 0.700), followed by K-means 
(accuracy: 0.825, AUC: 0.825, sensitivity: 0.700, specificity: 
0.950). After ComBat harmonization, watershed showed the 
most performance improvement, achieving the highest scores 
(accuracy: 0.875, AUC: 0.875, sensitivity: 0.800, specificity: 
0.950). This was followed by manual contouring, which 
retained its previous results before ComBat harmonization 
(accuracy: 0.850, AUC: 0.850, sensitivity: 1, specificity: 
0.700), and then by iterative threshold 50%, which also 
showed a good jump in terms of outcome (accuracy: 0.825, 
AUC: 0.825, sensitivity: 1, specificity: 0.750). These results 
demonstrated that implementing ComBat harmonization 
might be very helpful in terms of ML outcome improvement, 
especially for watershed segmentation which had the lowest 
number of robust features compared to manual contouring. 
After ComBat harmonization, sensitivity and specificity 
were dramatically improved in most cases or remained stable 
in manual contouring. Boosting the sensitivity is relatively 
important as missing positive cases could have serious 
consequences, such as in clinical diagnosis where a disease 
needs to be well characterized to provide timely treatment 
[64]. In addition, boosting specificity is essential as it may 
minimize the false positives rate [65]. The enhancement 
in sensitivity and specificity could be attributed to either 
the individual or combined influence of several factors: 
standardization of features, minimization of bias, and the 
improvement in data quality following the application of 
ComBat harmonization [66].

Although a number of studies examined the impact of 
ComBat harmonization on the reproducibility of radiomic 
features [67, 68], focus on the impact of harmonization on 
ML outcomes is lacking. However, our results in terms 
of ML outcome are consistent with previous studies 
substantiating the fact that ComBat harmonization enhances 
the machine learning classifiers performance [28].

This study inherently bears a number of limitations. 
First, the sample size was relatively small. Second, fully 
automated PET image segmentation algorithms (e.g., those 
using deep learning techniques) reported in more recent 
studies should also be considered [69, 70]. Third, exploring 
the repeatability and reproducibility of radiomic features 
using a phantom study is also needed to double-check 
these results in a controlled experiment. The application 
of robust features in a deep learning clinical study and the 
level of robustness of selected features by feature selection 
algorithms were not considered in the current study and will 
be evaluated in future studies. Finally, future studies will 



Annals of Nuclear Medicine	

explore and validate the harmonization process in a multi-
center, multi-scanner scenario to ensure the generalizability 
of our conclusions and the effectiveness of ComBat 
harmonization across diverse imaging platforms and settings 
as our study used data from single PET scanner.

Conclusion

The remarkable impact of segmentation variability on PET 
radiomic features may come up with errors in quantitative 
analysis. In this work, we proposed a solution to mitigate the 
adverse effects of this variability. ComBat harmonization 
enhances the robustness of radiomic features across all 
families and increases the number of robust features. 
In addition, harmonization improves machine learning 
performance, particularly for datasets with fewer robust 
features. Selecting features robust to diverse segmentation 
techniques is crucial for reducing errors in radiomic studies 
and enhancing accuracy. Reasonable performance was 
achieved by choosing robust features and applying ComBat 
harmonization.
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