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A B S T R A C T   

Purpose: This work set out to propose an attention-based deep neural network to predict partial volume corrected 
images from PET data not utilizing anatomical information. 
Methods: An attention-based convolutional neural network (ATB-Net) is developed to predict PVE-corrected 
images in brain PET imaging by concentrating on anatomical areas of the brain. The performance of the deep 
neural network for performing PVC without using anatomical images was evaluated for two PVC methods, 
including iterative Yang (IY) and reblurred Van-Cittert (RVC) approaches. The RVC and IY PVC approaches were 
applied to PET images to generate the reference images. The training of the U-Net network for the partial volume 
correction was trained twice, once without using the attention module and once with the attention module 
concentrating on the anatomical brain regions. 
Results: Regarding the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root mean square 
error (RMSE) metrics, the proposed ATB-Net outperformed the standard U-Net model (without attention 
compartment). For the RVC technique, the ATB-Net performed just marginally better than the U-Net; however, 
for the IY method, which is a region-wise method, the attention-based approach resulted in a substantial 
improvement. The mean absolute relative SUV difference and mean absolute relative bias improved by 38.02 % 
and 91.60 % for the RVC method and 77.47 % and 79.68 % for the IY method when using the ATB-Net model, 
respectively. 
Conclusions: Our results propose that without using anatomical data, the attention-based DL model could perform 
PVC on PET images, which could be employed for PVC in PET imaging.   

1. Introduction 

The partial volume effect (PVE) can limit the accuracy of Positron 
Emission Tomography (PET) images, particularly for features that are 
similar in size to the spatial resolution of the system (or point spread 
function - PSF), leading to noticeable spill-in and spill-out across adja-
cent regions and resulting in obvious biases [1–3]. Prior to the mea-
surement of lesion/organ metabolism and physiology, partial volume 
correction (PVC) may be necessary to take into account signal alteration 
due to the limited spatial resolution of the PET system. Many PVC ap-
proaches require an accurate definition of the anatomical boundaries, 

which necessitate concurrent anatomical imaging such as MRI. CT im-
ages do not provide detailed anatomical information of the brain 
structure, unlike MR images. While major tissue structures, such as soft 
tissue, bone, and air, can be easily distinguished in CT images, they do 
not provide anatomical details of the brain [4–6]. The utilization of 
anatomical information may not be possible due to the patient’s un-
controlled movements during image acquisition and mismatches be-
tween anatomical and functional data [1,7–9]. Deep learning (DL) 
approaches have already been utilized to perform PVC for PET images 
with and without employing anatomical information [10–14]. 

In conventional deep learning training, the collection of reference 
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datasets is critical; however, acquiring an underlying radiotracer uptake 
map in the brain is not practically feasible. To address this challenge, 
simulation data and/or synthetic data generated by the cycle generative 
adversarial network (CycleGAN) can be exploited to develop deep 
learning models [15–17]. Nevertheless, the simulation and synthetic 
data may not be realistic enough to develop a robust deep learning- 
based model. In this light, partial volume corrected PET data using 
anatomical MR data and/or brain templates are regarded as a reference 
for developing deep learning models [11]. 

In our previous works [10–12], the performance of deep neural 
networks to perform PVC without using anatomical images was assessed 
for six different PVC methods, including geometric transfer matrix 
(GTM) [4], multi-target correction (MTC) [18], region-based voxel-wise 
correction (RBV) [19], iterative Yang (IY) [20], reblurred Van-Cittert 
(RVC) [5], and Richardson-Lucy (RL) [5]. Different levels of error 
were observed for the different PVC methods. This is due to the fact that 
DL methods generally process the whole input image, while some PVC 
methods, such as GTM, rely on user-defined volumes of interest (VOIs) 
or anatomical regions (in the form of binary masks for the different brain 
regions) for the estimation of PVE-corrected activity concentrations. 

Attention-based neural networks have been proposed as a way to 
improve the performance of deep learning algorithms. These networks 
work by creating an attention map that identifies the most important 
parts of the input image dataset for the given task. By doing so, the 
network is able to extract meaningful and discriminative features from 
these key regions while disregarding less important ones. This approach 
helps to improve the overall performance of the network [19,21,22]. 

Since PVC entails a particular focus on the boundaries of the 
anatomical regions, an attention-based deep learning solution would be 
efficient for this task. In this regard, an attention-based convolutional 
neural network (ATB-Net) was proposed to conduct PVC on brain PET 
images. The objective was to build a model that could generate partial 
volume corrected images from PET images while concentrating on the 
critical brain areas. Therefore, the model explicitly targets anatomical 
brain regions and does not consider areas such as the neck and tumor 
regions. To this end, a modified encoder-decoder U-Net [23,24] with an 
extra compartment was designed to focus on the anatomical areas of the 
brain, converting the Automated Anatomical Labeling (AAL)[19] brain 
map into an attention map. To our knowledge, this is the first time an 
attention-based convolutional neural network has been employed to 
perform PVC on PET scans. Two PVC techniques, IY and RVC [5,20], 
were employed to examine the performance of the proposed ATB-Net. In 
addition, a conventional U-Net model was trained to investigate the 
effect of the attention compartment in the ATB-Net model on the pre-
dicted partial volume corrected images. 

2. Materials and methods 

2.1. Data acquisition 

In this study, a total of 160 patients diagnosed with head and neck 
tumors were enrolled. The patient data was randomly divided into three 
datasets, with 100 patients for training, 20 for validation, and 40 for 
external testing. It is important to note that only patients with head 
cancer were included in this study to evaluate their brain area. Written 
consent was acquired from patients who participated in this study. 
Following injection of a typical 18F-FDG dosage of 205 ± 10 MBq, all 
patients were scanned on a PET/CT scanner (Biograph 16 PET/CT 
scanner, Siemens Healthineers, Germany). The intensity values of the 
PET images were converted into Standardized Uptake Values (SUV), and 
the PET images were resampled to an isotropic voxel size of (2 mm)3. 
The PET images were then cropped into a matrix size of 144 × 144 × 120 
so that the data was explicitly focused on the brain to remove the 
irrelevant surrounding air and neck before the development of the deep 
learning networks. Detailed demographic information of the patients is 
summarized in Table 1. 

2.2. Partial volume correction 

The PETPVC toolbox [5,25], developed in C++ utilizing the insight 
segmentation and registration toolkit, included eight major post- 
reconstruction PVC algorithms and was employed to conduct PVC on 
PET images. To correct PET images for PVE, two commonly used PVC 
techniques, IY and RVC, were implemented. These two methods are 
elaborated in sections B.1 and B.2 in the following. Since the IY PVC 
approach is a region-based method, it requires anatomical masks of 
brain regions in order to estimate the activity concentration within each 
region. To obtain the anatomical brain regions, AAL brain atlas was co- 
registered to the PET data using AAL brain region transforms in MNI152 
non-linear warp into the subject-space with the FSL tool. Providing a 
mask along with the co-registered AAL atlas to Atlasquery allows us to 
analyze specific regions of interest within the PET data and obtain in-
formation about those regions’ anatomical labels and characteristics. By 
inputting the PET data and either the coordinates of interest or a mask, 
Atlasquery calculates and provides the average probability of the voxel 
or mask belonging to different labeled regions in the AAL atlas. When a 
mask is applied, the average probability is determined by considering all 
the voxels within the mask. 

On the other hand, the RVC method is a deconvolution-based tech-
nique that does not require the anatomical mask. This method used the 
scanner’s PSF to execute PVC through a deconvolution process. The 
study used a Biograph scanner (Siemens Healthineers), whose resolution 
is modeled as a PSF equivalent to a Gaussian function with Full-Width at 
Half-Maximum (FWHM) of 4–5 mm. A Gaussian kernel with the same 
FWHM was used to reconstruct the PET images in a shift-invariant 
manner. In this case, the RVC technique was fed with the PSF of the 
Biograph 16 scanner with a FWHM of 5 mm to conduct PVC. 

2.2.1. Iterative Yang (IY) 
The IY method [18], which is an improved version of the Yang 

method [19,26], relies on region of interests/anatomical masks to esti-
mate mean value within each region from input PET data using Eq. (1): 

fk+1(x) = f (x)
[

sk(x)
sk(x) ⊗ h(x)

]

(1)  

Here, sk(x) =
∑n

i=1
[
Tk,iPi(x)

]
is a piece-wise version of the PET image 

(based on the anatomical regions) with a mean value for each area, Tk,i is 
the estimated mean value of region i at iteration k, h denotes the sys-
tem’s PSF, f is the input image, and fk is the estimate of the partial 
volume corrected image at iteration k. According to Erlandsson et al. 
[27], the IY technique requires only 3–5 iterations. Therefore, 5 itera-
tions were executed. 

2.2.2. Deconvolution techniques (RVC) 
Deconvolution-based approaches, which do not need anatomical 

knowledge or segmentation, were developed to correct for the PVE and 
blurring owing to the limited spatial resolution when high-resolution 
anatomical images are unavailable. The accuracy of these techniques 
is limited when the signal-to-noise ratio in the input images is not suf-
ficiently high, which may result in noise amplification. Nevertheless, 
this approach could improve the image’s contrast when no anatomical 
information is provided. 

The RVC is implemented in an iterative fashion using Eq. (2) [19,28]: 

Table 1 
Demographics of patients included in this study.   

Training Test Validation 

Number 100 40 20 
Male/Female 59/41 23/17 12/8 
Age (mean ± SD) 63 ± 8 60 ± 18 63 ± 4.5 
Weight (Mean ± SD) 71 ± 6 69 ± 12 72 ± 11 
Indication/diagnosis head and neck cancer staging or follow-up examinations  
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fk+1(x) = fk(x)+ α. h(x) ⊗ [f (x) − h(x) ⊗ fk(x) ] (2)  

Here, α is the converging rate parameter which defines the level of 
correction at each iteration. 

2.3. Deep neural network implementation 

The architecture of the proposed ATB-Net is depicted in Fig. 1. This 
model comprises a modified U-shape encoder-decoder structure that 
takes PET images as input, wherein an extra compartment (attention 
module) creates the attention maps using the AAL brain map to define 
the anatomical regions. Through element-wise additions, the attention 
map is merged with the first layer of the main path, and the output of the 
combined layer is then transferred through the next layer of the main 
path. The modified U-Net is a fully convolutional network with deep 
concatenation connections between the corresponding stages in the 
encoder-decoder structure. Convolutional layers with 3 × 3 kernels and 
a rectified linear unit (ReLU) are employed at each level. A 22 % max- 
pooling is used to down-sample and up-sample data across the 
different stages. The Adam optimizer with a learning rate of 0.003 was 
used to train the network. The main goal was to train two independent 
DL models to synthesize the PVC images (one for IY and one for the RVC 
algorithm) from non-PVC PET images. In comparison to the U-Net 
network, the ATB-Net model benefits from a modified encoder-decoder 
structure and an extra compartment that generates the attention maps. 
The training of the ATB-Net and U-Net models was performed using 2D 
PET images (each transaxial slice as a single data sample), and overall, 4 
PVC models were developed for the two PVC algorithms using the two 
deep learning models. 

2.4. Performance evaluation 

Standard quantitative measures, including the root mean square 
error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity 
index metric (SSIM), Mean absolute relative bias (MARB), and mean 
absolute relative SUV difference (MARSUVD), were calculated between 
the reference and predicted PVC images by the U-Net and ATB-Net 
models to assess the performance of deep learning PVC solutions. 

In addition to the SSIM, RMSE, and PSNR metrics, region-wise RMSE 
was calculated for the 71 anatomical brain regions defined by the AAL 
brain atlas. The symmetric regions in the left and right brain lobes were 

combined in the analyses to create 34 regions. Finally, using paired t-test 
analysis, the statistical significance of the differences between the U-Net 
and ATB-Net data was determined. A p-value less than 0.05 was 
considered as a statistically significant difference. 

3. Results 

Fig. 2 shows transaxial views of a sample input PET image (first row), 
reference PVE corrected PET images for IY and RVC approaches (second 
row), predicted PVE corrected images by the U-Net model (third row), 

Fig. 1. Architecture of the proposed ATB-Net for predicting partial volume corrected images from PET images.  

Fig. 2. Transaxial views of a representative PET image before PVC (first row), 
reference PVC PET images generated by the two PVC methods (second row), 
PVC PET images predicted by the U-Net model (third row), and PVC PET images 
predicted by the ATB-Net model for IY and RVC PVC approaches (forth row). 
These subjects from the test dataset have been diagnosed with brain and head 
tumors, but the brain images do not indicate any tumors or abnormalities. 
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and predicted PVE corrected images by the proposed ATB-Net models 
for the two PVC algorithms (fourth row). The images predicted by the U- 
Net and the ATB-Net exhibit highly comparable structures/details to the 
reference PVC images regarding the visual assessment. On the other 
hand, IY images generated by the ATB-Net model contain sharp edges 
comparable to reference images, while IY images predicted by the U-Net 
model exhibited smoother structures/edges. 

Table 2 and Fig. 3 summarize the findings of the quantitative as-
sessments of the deep learning-based PVC models in terms of PSNR, 
RMSE, SSIM, MARSUVD, and MARB metrics for the U-Net and ATB-Net 
predicted images within the whole brain area. 

The proposed ATB-Net model with PSNR of 27.20 and 22.64 and 
SSIM of 0.95 and 0.83 exhibited superior performance to the U-Net 
model with PSNR of 25.23 and 14.77 and SSIM of 0.94 and 0.67 for the 
RVC and IY approaches, respectively. Moreover, the ATB-Net model led 
to smaller RMSEs of 0.69 and 0.90 (in terms of SUV) for the RVC and IY 
approaches, respectively, compared to the U-Net model with RMSEs of 
0.79 and 1.35. The boxplot of PSNR, RMSE, and SSIM results, as re-
ported in Table 2, are presented in Fig. 3, while the bar plots of region- 
wises MARSUVD and MARB are shown in the Supplementary material. 

Both the RVC and IY methods for the ATB-Net model outperformed 
their U-Net counterparts in terms of MARSUVD and MARB parameters. 
The values obtained for RVC were 0.12 and 1.25, while for IY, they were 
0.41 and 4.46 respectively. These results highlight the superior perfor-
mance of the ATB-Net model over the U-Net model in predicting both 
absolute SUV difference and absolute relative bias. The ATB-Net model 
has a lower network error rate and provides more accurate predictions 
of relative SUV difference compared to the U-Net model. The lower 
MARSUVD values indicate that the ATB-Net model produces more 
reliable predictions of relative SUV values with a reduced error rate. 

Overall, the proposed ATB-Net outperformed the U-Net model in 
terms of MARB and MRSUVD by 91.60 %, 38.02 %, and 79.68 %, 77.47 
%, for RVC and IY approaches, respectively. The PSNR, RMSE, SSIM, 
MARSUVD, and MARB values obtained from the U-Net and the proposed 
ATB-Net for the IY method showed statistically significant differences (p 
< 0.05). On the other hand, for the RVC method, only the MARSUVD 
and MARB values showed statistically significant differences between 
the U-Net and ATB-Net. 

The summary of the region-wise (i.e., for the different anatomical 
brain regions) analysis of the two DL-based PVC models is presented in 
Figs. 4 and 5. The AAL brain atlas was used to identify 71 brain areas, 
and the region-wise RMSEs were calculated. The left and right sym-
metric regions were combined to reduce the number of brain areas to 34. 
Except for the Rolandic-Opcr, Supp-Motor-Area, Olfactory, Insula, 
Cingulum-Ant, Cingulum-Post, Hippo-Parahippo, Caudate Nucl, Heschl, 
and Vermis regions, the differences between the RMSEs obtained from 
the U-Net and the proposed ATB-Net model for the IY method were all 
statistically significant (p < 0.05). However, the RMSEs obtained from 

the proposed ATB-Net model and the U-Net for the RVC approach 
(Fig. 5) were all small. 

4. Discussion 

An attention-based deep learning model was implemented without 
utilizing anatomical images for PVC in PET imaging. Regarding the 
limited access to simultaneously acquired MR images, the proposed deep 
learning model performs PVC without using MR anatomical images. To 
accurately define the anatomical regions of the brain, the AAL brain map 
was employed, wherein an encoder-decoder U-Net with an extra 
compartment was designed, which translates the AAL brain map into an 
attention map. The reference images were created using two commonly 
used PVC methods, including the IY and RVC methods [5,19,20]. Visual 
assessment and quantitative evaluation demonstrated the ATB-Net 
model’s promising performance for predicting the partial volume cor-
rected PET images without using anatomical images, especially for the 
IY PVC method. 

The ATB-Net network outperformed the U-Net model owing to the 
attention module, which concentrates on the key anatomical regions 
defined by the AAL template. The performance of deconvolution tech-
niques such as RVC is limited (compared to the methods that employ 
anatomical images such as the IY approach) since these approaches rely 
solely on deconvolution processes to model/compensate for the spatial 
resolution of the PET system. When no anatomical information or proper 
segmentation is available, these approaches could offer at least a sub-
optimal partial volume correction. 

Table 3 displays the mean values of three parameters, RMSE, PSNR, 
and SSIM, obtained from the testing data of reference PVC images 
derived from IY and RVC methods. 

Based on the comparison of PSNR, RMSE, and SSIM values in Table 2 
with those in Table 3, it is evident that applying PVC to standard-dose 
PET images resulted in significant errors that led to reductions in 
SSIM, PSNR, and RMSE scores. This indicates that the PVC process 
introduced inaccuracies and inconsistencies in the images. However, 
both the U-Net and ATB-Net models were able to predict PVC images 
accurately. This suggests that these deep learning models were able to 
compensate for the errors introduced during the PVC process effectively. 
The U-Net model had higher MARSUVD values, indicating larger 
average differences between predicted and reference SUV values, 
whereas the ATB-Net model achieved lower MARSUVD values, indi-
cating smaller average differences. 

The results demonstrate that deep learning techniques are highly 
effective in enhancing PVC images. By reducing errors and improving 
accuracy, models such as U-Net and ATB-Net prove to be valuable tools 
in enhancing the quality and reliability of PVC images. 

After examining and analyzing five different parameters – PSNR, 
RMSE, SSIM, MARB, and MARSUVD - for the results obtained from the 
ATB-Net and U-Net networks for two RVC and IY methods, it can be 
concluded that these networks were well investigated and analyzed. The 
performance of these methods was sufficient and satisfactory as deep 
learning was able to qualitatively and quantitatively improve the quality 
of PVC images in all parameters. Both models showed accurate pre-
dictions of PVC images, indicating that they effectively eliminated the 
errors introduced and compensated for the length of the PVC process. 
Furthermore, the ATB-Net network improved the quality of images and 
provided more reliable and accurate predictions. 

For partial volume correction, Yuanyuan Gao et al. [29] investigated 
a voxel-based PVC approach using anatomical non-local means (NLMA) 
regularization and a least squares framework (LS). The well-known non- 
local means (NLM) filter takes advantage of the existing information 
redundancy within images to reduce image noise directly by replacing 
each voxel intensity with a weighted average of its non-local neighbors 
[30,31]. To conduct PVC, they considered NLM as a regularization term 
within an iterative-deconvolution model. In addition, an anatomically 
guided version of NLM was presented, which included MRI data into 

Table 2 
PSNR, RMSE and SSIM mean values and standard deviation calculated within 
the whole brain region for the PVC predicted images by U-Net and the proposed 
ATB-Net (separately for the RVC and IY approaches). The p-values have been 
calculated between the U-Net and ATB-Net for two IY and RVC models.  

Test 
dataset 

U-Net 
vs RVC 

U-Net 
vs IY 

ATB-Net 
vs RVC 

ATB- 
Net vs 
IY 

P value 
for RVC 

P value 
for IY 

PSNR 25.23 
± 5.71 

14.77 
± 3.28 

27.20 ±
4.78 

22.64 
± 3.94  

0.09 <0.01 

RMSE 
(SUV) 

0.79 ±
0.48 

1.35 ±
0.48 

0.69 ±
0.35 

0.90 ±
0.39  

0.26 <0.01 

SSIM 0.94 ±
0.05 

0.67 ±
0.06 

0.95 ±
0.03 

0.83 ±
0.04  

0.11 <0.01 

MARSUVD 1.24 ±
0.54 

1.82 ±
0.75 

0.12 ±
0.14 

0.41 ±
0.22  

<0.01 <0.01 

MARB 14.99 
± 1.17 

22.02 
± 1.68 

1.25 ±
0.97 

4.46 ±
1.88  

<0.01 <0.01  
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NLM to improve spatial resolution and reduce image noise. As a result, 
they showed that NLMA gives a better bias-noise trade-off compared to 
other PVC methods. 

Chen et al. [32] exploited deep learning (DL) techniques to develop 
PVC for PET images using prior knowledge extracted from MR images. 
The development of deep learning models largely depends on reference 
data; however, the reference of the underlying anatomy and radiotracer 
uptake is inaccessible in clinical studies. In order to address this issue, a 
model trained on simulated data is transferred, which has easier access 
to reference. In this regard, PVC for PET images can be performed using 

a cycle-GAN model trained on simulated PET images. The developed 
deep learning model could be further fine-tuned to the clinical studies 
using transfer learning. The present work aimed to offer PVC solutions 
without requiring anatomical MR; however, the proposed model by 
Chen et al.[32] requires co-registered MR and PET data. Though incor-
porating anatomical MR images would enhance the performance of the 
deep learning model, this work aimed to develop an MR-independent 
PVC model wherein the attention module and the AAL brain map 
were employed to compensate for the lack of anatomical MR images. 

Although the proposed ATB-Net exhibited only slightly better 

Fig. 3. Box plots of image quality metrics calculated for the U-Net and ATB-Net models over the entire brain region. First row) IY PVC method and second row) RVC 
PVC method. 

Fig. 4. Region-wise RMSEs obtained from the U-Net and ATB-Net models for the IY PVC method in 34 brain regions.  
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performance compared to the U-Net for the RVC method, superior per-
formance was observed for the IY method when using the ATB-Net due 
to the fact that the IY method is a region-based method and the use of 
attention module and brain template aided to accurately predict the PVC 
PET images. IY approaches, correcting the entire image voxel by voxel, 
do not require any prior knowledge of the activity distribution and could 
be utilized for any number of areas. The RVC approach, on the other 
hand, is based on an additive correction step and assumes a Gaussian 
noise model. Due to noise amplification issues, RVC should be stopped 
after certain iterations, which may not reach its full convergence. 
However, one of the advantages of RVC over inverse filter (modeling the 
PSF of the system) is the ability to stop iterations before the artifacts 
appear. A duplicate of the original PET image is smoothed using a 
Gaussian-shaped kernel that represents the scanner’s PSF in the RVC 
technique. Then, a different image is created between the smoothed 
version and the original PET image, which is added to the original un-
smoothed PET image to produce a crisper image. This method is 
continued until a PET image with a significant improvement/modifi-
cation is acquired after each cycle. The procedure will be discontinued 
when no improvement is observed as the iterations proceed. On the 
other hand, Iterative deconvolution enhances noise at each repetitive 
step, and the process is frequently terminated prematurely to prevent a 
low signal-to-noise ratio. 

It is important to note that the quality of a PET scan image depends 
on the scanner’s sensitivity and the imaging protocol used. The injection 
dose and scanning time may vary across different medical centers, 
however they are similar to a large extent. This would challenge the 
distribution of the proposed PVC method. Therefore, it is possible to 
employ transfer learning techniques using a small dataset from the 
target center or fine-tuning the model to new data to achieve optimal 
performance. 

This study is limited in the sense that the partial volume effect was 
not corrected using patient-specific anatomical MR data, and instead, 

the AAL brain map was employed to implement PVC algorithms. In 
addition, since there were no ground-truth data (such as simulations) 
with which to compare the performance of the PVC algorithms, com-
parisons of the PVC algorithms were not possible. Thus, some of these 
algorithms may be intrinsically flawed, resulting in a negative impact on 
the deep learning models developed on their basis. To this purpose, 
certain common methodologies, such as the unrolling technique [33], 
should be adopted so that we can determine whether the inaccuracy is 
due to the PVC algorithm’s suboptimal performance or poor deep 
learning training. 

5. Conclusion 

The attention-based deep learning model was shown to be capable of 
performing PVC methods on PET scans without the use of anatomical 
images to determine brain regions. When no MR images are available, 
the proposed attention-based deep learning model could be employed 
for PVC on PET-CT and/or PET-only images. We aim to expand the study 
by using inter-hospital patient data to remove potential bias in the 
trained network and make it more generalizable with more data for test. 
For the future, we suggest an unrolling algorithm to predict PV- 
corrected maps from PET images directly. Additionally, the techniques 
employed in this study can be applied to other body areas for a 
comprehensive understanding. Using an atlas for specific areas can 
streamline the process and ensure consistent results across studies. 
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Fig. 5. Region-wise RMSEs obtained from the U-Net and ATB-Net models for the RVC method in 34 brain regions.  

Table 3 
Reference PVC images for the entire head region were used to calculate quan-
titative image quality metrics (mean ± SD).  

Test dataset RVC IY 

PSNR 18.07 ± 1.91 13.31 ± 2.49 
RMSE (SUV) 2.87 ± 0.75 4.29 ± 1.47 
SSIM 0.43 ± 0.05 0.36 ± 0.05  
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