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a b s t r a c t

There have been exclusive features for hybrid PET/MRI systems in comparison with its PET/CT counter-
part in terms of reduction of radiation exposure, improved soft-tissue contrast and truly simultaneous
and multi-parametric imaging capabilities. However, quantitative imaging on PET/MR is challenged by
attenuation of annihilation photons through their pathway. The correction for photon attenuation
requires the availability of patient-specific attenuation map, which accounts for the spatial distribution of
attenuation coefficients of biological tissues. However, the lack of information on electron density in the
MR signal poses an inherent difficulty to the derivation of the attenuation map from MR images. In other
words, the MR signal correlates with proton densities and tissue relaxation properties, rather than with
electron density and, as such, it is not directly related to attenuation coefficients. In order to derive the
attenuation map fromMR images at 511 keV, various strategies have been proposed and implemented on
prototype and commercial PET/MR systems. Segmentation-based methods generate an attenuation map
by classification of T1-weighted or high resolution Dixon MR sequences followed by assignment of
predefined attenuation coefficients to various tissue types. Intensity-based segmentation approaches fail
to include bones in the attenuation map since the segmentation of bones from conventional MR
sequences is a difficult task. Most MR-guided attenuation correction techniques ignore bones owing to
the inherent difficulties associated with bone segmentation unless specialized MR sequences such as
ultra-short echo (UTE) sequence are utilized. In this work, we introduce a new technique based on
statistical shape modeling to segment bones and generate a four-class attenuation map. Our segmenta-
tion approach requires a torso bone shape model based on principle component analysis (PCA). A CT-
based training set including clearly segmented bones of the torso region of 20 clinical studies was
designed. Using this training set, a bone atlas was trained taking advantage of PCA analysis. Our active
shape segmentation technique uses the trained shape model to segment bones from user defined initial
seed points. The segmentation algorithm was evaluated using 10 clinical datasets (aligned MR and CT
pairs). The resulting attenuation maps were compared to corresponding attenuation maps derived from
CT resulting in a mean relative difference less than 7%.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid imaging systems enable the combination of functional
and anatomical imaging modalities in a single session. During the
last decade, hybrid PET/CT systems have evolved rapidly and
achieved widespread acceptance to become one of the standard

diagnostic imaging tools in clinical practice [1,2]. The recent
introduction of hybrid PET/MRI systems, a technology enabling
to combined molecular PET imaging with multiparametric MR
signals, stimulated the interest of the medical imaging community
given the many advantages they offer compared to PET/CT includ-
ing the improved soft tissue contrast of MR compared to CT and
reduced radiation dose to the patient [3].

A number of strategies have been recently proposed to perform
MR-based attenuation correction [4–6]. Among these techniques,
segmentation (tissue classification)-based methods are the most
popular and practical approaches. The approach adopted on the
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Philips Ingenuity PET/MR system uses a 3D multi-stack spoiled
T1-weighted gradient echo sequence to partition MR images in a
finite number of classes (soft-tissue, lung and air). Thereafter,
attenuation coefficients at 511 keV corresponding to biological
tissues of each class are assigned to voxels belonging to this class
[4,7]. This category of methods is challenged by the difficulty
associated with segmenting bones from corresponding MR images
since bones and air cavities have identical signal intensity in
MR images when using conventional sequences. The lungs are
well shaped organs and as such, popular segmentation algorithms
enable their successful classification. However, bony structures
contain a thin layer of low intensity cortical bone which encom-
passes a very high intensity bone marrow signal, thus making
it very difficult to delineate them through an image segmentation
approach.

Specially designed pulse sequences such as ultra-short echo
(UTE) [8,9] and a combination of short echo-time (STE) and long
echo-time (LTE) [10] enabling to differentiate between bones and
air cavities have been suggested recently. However, this approach
is practical only for scans covering a limited axial field-of-view
(e.g. brain or head and neck) owing to the long acquisition time for
whole-body imaging. For torso PET/MR imaging, bony structures
are usually ignored and considered as soft tissue, assuming that
neglecting bones does not significantly affect quantitative PET
imaging [7]. The validity of this hypothesis was evaluated by
several groups demonstrating that ignoring bone might not be
adequate for quantification of osseous lesions. This is particularly a
concern in therapy monitoring applications. A wide range of
standardized uptake value (SUV) underestimation for osseous
lesions was reported in the literature. The bias was reported to
be 5–15% [7,11,12] or up to 23% [13] when PET/CT data is used,
whereas simulation studies using an anthropomorphic thorax
phantom reported a local bias of up to 17% [14] or even 30% [15].

Image segmentation, which has been identified as the key
problem of medical image analysis and remains a popular and
challenging area of research, is the process of extracting the object
of interest from its neighborhood (e.g. bones in the torso region).
The most challenging issue in this particular context is that direct
bone segmentation using MR image intensities is a very difficult
task. Nevertheless, a limited number of papers reported on
techniques enabling to segment bone from MR images for some
regions of the body based on 2D or 3D local texture information
and also local 3D histograms analysis [16–19].

Fortunately for medical imaging applications, the shape and
location of major bones are well identified from knowledge of the
human anatomy. This knowledge can be included during the
segmentation process to model bone shape parameters. A straight-
forward approach to incorporate this prior knowledge consists

in probing a number of training shapes using statistical shape
modeling approaches [20]. In this work, we propose a new
segmentation technique based on statistical shape modeling to
segment bones from MR images in combined torso PET-MR
imaging, thus enabling to generate a 4-class attenuation map
(background, lungs, soft tissue, and bone) at 511 keV.

2. Materials and methods

2.1. Statistical atlas generation

The generation of a statistical atlas is a common prerequisite
for shape-based segmentation procedures. A statistical atlas
represents a statistical distribution of object's shape in space
whose components are detected using multivariate analysis tech-
niques such as principle component analysis (PCA) on training
sets. Our training set was produced from torso CT scans of
20 patients.

In the first step, bones of the torso region are segmented using
connected thresholding. Connected thresholding methods label
voxels connected to an initial seed when they lie within a lower
and upper threshold. Voxel having intensities higher than 120 HUs
were assumed to belong to bony regions. The result of this step is
a binary mask where bones are assigned label 1 and the remaining
regions label 0. In the second step, a special distance map referred
to as “signed distance map” (SDM) is calculated on the segmented
object (bones). In this process, the Euclidean distance of each voxel
from the segmented object boundary is calculated and the result
assigned to that voxel. If the voxel is inside the segmented
object, a negative calculated distance is assigned and vice versa.
Danielsson's algorithm was used for the computation of image
distance map [21].

The third step consists in performing rigid-body registration of
the clinical studies used to build the atlas. The rigid registration
algorithm uses 7 parameters: one isometric scale parameter for
x, y and z coordinates, 3 rotational parameters and 3 shift para-
meters. The similarity metric used for registration is based on
normalized correlation coefficients. To this end, one of the studies
was selected as reference (target) while the remaining 19 floating
images were registered to this target image. It is worth pointing
out that the registration was performed on the images resulting
from the application of the second step (SDMs). The final step
consists of PCA analysis on shapes or rigidly registered SDMs.
Briefly, PCA is the process of finding the most significant
Eigenvalues of the covariance matrix. After sorting the calculated
Eigenvalues, the 14 most powerful components are selected to form
the shape space. The statistical atlas is then constructed using the
calculated components (Fig. 1).

Fig. 1. Summary of steps required to generate the statistical atlas: (a) CT image of one patient from the training set, (b) bones extracted from the CT image, (c) signed
distance map for segmented bones of the CT image, ((d)–(g)) generated torso bone shapes from the variation of the first component of shape space (increasing component
values from left to right).
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2.2. Shape-based segmentation

Geodesic active contours segmentation with shape guidance is a
semiautomatic image segmentation algorithm which considers
initial user specified seed points and a statistical atlas to segment
the object [22]. The algorithm was implemented using the ITK class
library. In brief, the user selects a number of seed points inside
bones using an interactive user interface in order to segment bones.
Subsequently, the edges are detected on the MR image (whose
bones are to be segmented) to produce the so-called feature image
(other features can be considered as well). In the following step, the
fast marching algorithm is applied to the feature image through
initialization from the selected seed point coordinates. As the model
grows, its global properties are controlled using the rigidly trans-
forming statistical atlas (constructed in the previous step) and other
shape characteristics.

The Geodesic active contour shape prior level set image filter
ITK filter was used for shape segmentation. This filter inherits
active contour controlling parameters such as advection and
curvature of the contour. These parameters were determined
based on their concepts along with fine tuning following several
tests. In addition to these parameters, the filter uses the statistical
atlas to control the shape. In this case, the atlas holds 14
components, each one being controlled by one parameter. During
this procedure, the filter finds the optimum 14 parameters to form
the best fit shape.

The statistical shape model is not inherently capable of support-
ing rotation, scaling and translation of shapes. Therefore, a rigid
spatial transformation using 7 parameters was added to the proce-
dure. Twenty-one parameters (14 for shape model and 7 for
transformation) in total were updated at each iteration of the
segmentation process, which converged within 250–400 iterations.

A set of registered CT and MR image pairs of 10 clinical datasets
were used to evaluate the proposed segmentation algorithm. The
segmented bones from CT and MR images (using the proposed
method) were compared using the “distance error map”. This map
(reported in mm) highlights the minimum distance of the surface
voxel from one object to the other. The average error is referred to

as the distance error while the maximum error corresponds to the
well-known Hausdorff distance [23].

In addition to the bones, it is necessary to segment lungs and
soft tissue to generate a four-class attenuation map consisting of
the background, lungs, soft tissue, and bone. The lungs were
segmented using a connected region growing technique based
on user selected seed points. The appropriate threshold for the
lungs was estimated according to the intensity of seed points and
their neighborhood voxels. A combination of Gaussian smoothing
region growing and binary image morphology operators was used
to separate the whole-body from the background. The minimum
threshold for the whole body was selected to be above the
maximum threshold of the lungs. Unwanted little gaps were filled
using morphological operators.

The three different class (bones, lungs and soft tissue) were
combined such that the voxels classified as being part of the
whole-body but not labeled as bone were considered to belong to
soft tissues class. Voxels belonging to bone and lung classes
remained unchanged.

Following segmentation, attenuation coefficients at 511 keV
were assigned to each specific class. The attenuation coefficients
at 511 keV were assigned according to coefficients used in the
XCAT anthropomorphic model [24,25]. The resulting attenuation
map is then down-sampled and smoothed to produce the final
attenuation map to be used for attenuation correction of the
corresponding PET data.

3. Results

Image segmentation results using the proposed algorithm are
shown in Fig. 2 where the voxels labeled in white were super-
imposed on the original MR image. The distance error map
calculated on the corresponding CT-based bone segmentation is
also shown (Fig. 2d). It should be noted that owing to the limited
axial MR FOV, multiple volumes were merged resulting in slight
visible mismatch (Fig. 2).

Fig. 2. Bone segmentation from MR images for one a clinical study shown on different views: (a) sagittal, (b) coronal, (c) and axial. (d) Distance error map calculated from
comparison of MR segmented bones with CT segmented bones.

Table 1
Mean/standard deviation/maximum distance error between segmented MR bones from corresponding segmented CT bones for 10 clinical studies.

P#1 P#2 P#3 P#4 P#5 P#6 P#7 P#8 P#9 P#10

Mean (mm) 6.26 5.08 3.19 4.86 5.67 5.04 4.93 6.52 3.9 7.59
Standard deviation (mm) 5.9 4.93 3.22 4.76 5.81 4.6 4.47 6.04 3.64 6.96
Max (mm) 34.54 30.29 21.51 28.46 34.1 27.54 27.68 30.95 30.63 34.44
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Table 1summarizes the distance error map between segmented
bones from MR images using the proposed algorithm and those
segmented from CT images, serving as reference for the 10 clinical
studies used in this work. The mean error varies between 3 and
7 mmwhile the maximum error falls within the range of 21–35 mm.

Fig. 3 displays the MR-guided m-maps generated using
both the conventional 3-class (ignoring bone) and the 4-class
approaches (considering bone) as compared to the reference
CT-based attenuation map.

4. Discussion

In this work, we implemented a semiautomatic shape-based
segmentation algorithm to extract bony structures from conven-
tional T1-weighted MR sequence in order to generate an
MR-guided attenuation map at 511 keV that can be used for
attenuation correction of corresponding PET data on hybrid PET/
MR system. The accuracy of the method was evaluated using
aligned MRI and CT image pairs of 10 patients using the distance
error metric [26].

The inclusion of bones will improve the quantitative capability
of hybrid PET/MR imaging. The conclusions drawn from our
previous work seem to suggest that classification of bones as
a distinct class will compensate for tracer uptake bias of up to 17%
in osteo-metastatic lesions [15]. Among the limitations of the
proposed segmentation method is that it fails to segment rib
bones owing to large shape variations between individuals (Fig. 2).
However, since the ribs consist of thin bony structures, this
shortcoming is not expected to produce severe bias in tracer
uptake. Our reported mean and maximum error distances are
large compared to previous related works on pelvic and femur
bone segmentation from MR images (8 mm vs. 2 mm and 35 mm
vs. 20 mm, respectively) [27,28]. This is likely due to the larger
axial field-of-view and more complex segmentation of the torso
region. Moreover, the femur and hip shape variations are less
compared to the torso.

The downsampling and smoothing of the attenuation map to
match PET's spatial resolution reduces the effect of segmentation
and other errors as well as overestimation of bony structures in
the attenuation map and corresponding ACF sinograms [29]. Using
theoretical attenuation coefficients of biological tissues, a 4-class
attenuation map including bone was produced using the proposed
approach that enables to reduce the bias associated with attenua-
tion correction errors in comparison with currently used 3-class
attenuation maps ignoring bone.

5. Conclusion

This work proposes a novel approach to generate 4-class
attenuation maps (background, soft tissue, lungs, and bone) for
MR-guided attenuation correction on hybrid PET/MR systems.
Attenuation correction methods ignoring bony structures used
on current whole-body PET/MR systems cause the underestima-
tion of tracer uptake especially in bony lesions, which might in
some cases jeopardize clinical interpretation. Our proposed
approach enables to classify bones for more accurate derivation
of the attenuation map. Bone segmentation from conventional MR
pulse sequences without the need to use sophisticated and time
consuming special MR sequences reflects the novelty of our work.
The suggested approach will undoubtedly improve the quantita-
tive capability of PET/MR imaging in the clinic.
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