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A B S T R A C T

Objectives: We aim to develop and rigorously evaluate an image-based deconvolution method to jointly com-
pensate respiratory motion and partial volume effects (PVEs) for quantitative oncologic PET imaging, including
studying the impact of various reconstruction algorithms on quantification performance.
Procedures: An image-based deconvolution method that incorporated wavelet-based denoising within the Lucy-
Richardson algorithm was implemented and assessed. The method was evaluated using phantom studies with
signal-to-background ratios (SBR) of 4 and 8, and clinical data of 10 patients with 42 lung lesions ≤30mm in
diameter. In each study, PET images were reconstructed using four different algorithms: OSEM-basic, PSF, TOF,
and TOFPSF. The performance was quantified using contrast recovery (CR), coefficient of variation (COV) and
contrast-to-noise-ratio (CNR) metrics. Further, in each study, variabilities arising due to the four different re-
construction algorithms were assessed.
Results: In phantom studies, incorporation of wavelet-based denoising improved COV in all cases. Processing
images using proposed method yielded significantly higher CR and CNR particularly in small spheres, for all
reconstruction algorithms and all SBRs (P < 0.05). In patient studies, processing images using the proposed
method yielded significantly higher CR and CNR (P < 0.05). The choice of the reconstruction algorithm im-
pacted quantification performance for changes in motion amplitude, tumor size and SBRs.
Conclusions: Our results provide strong evidence that the proposed joint-compensation method can yield im-
proved PET quantification. The choice of the reconstruction algorithm led to changes in quantitative accuracy,
emphasizing the need to carefully select the right combination of reconstruction-image-based compensation
methods.

1. Introduction

FDG PET/CT imaging has had a major influence in cancer imaging
for many clinical tasks including lesion detection, staging and mon-
itoring therapy response [1–3]. Nevertheless, respiratory motion and
partial volume effects (PVEs), two of the most important causes of

image degradation in lung cancer imaging, have been observed to sig-
nificantly hamper PET image quality and quantification, in particular in
small and low-uptake lesions [4–6]. For example, in lung lesions, a
displacement of 4.9–20mm due to respiratory motion can result in
notable errors in tumor localization and quantification [7–9]. Several
methods have been proposed for compensation of respiratory motion in
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PET images, such as respiratory gating, data-driven respiratory gating,
motion-free method, banana artefact management and deconvolving
the reconstructed image with the motion-blurring kernel (MBK), re-
ferred to as deconvolution methods [10–12]. Similarly, PVEs, which
result from the finite spatial resolution of PET scanners, limit lesion
detectability and accurate quantification [13–15]. Several methods
have been proposed to overcome PVEs limitations [16–18], including
deconvolution-based methods. However, using deconvolution methods
lead to significant noise enhancement. Previous work [19] has shown
that incorporation of wavelet-based denoising inside the deconvolution
operation can substantively diminish noise levels without significantly
degrading intensity recovery. Another class of methods have in-
vestigated combined compensation of respiratory motion and PVEs
[20–22]. These studies demonstrated that, in thoracic PET imaging,
quantification of PET uptake values can be substantively improved by
combined compensation. Apostolova et al [23] investigated the influ-
ence of combined compensation on quantification of small solitary
pulmonary nodules (SPNs) in experimental phantom and patient data
and concluded that, in combined compensation, standardized uptake
value (SUV) increased up to 46% compared with PVEs-only compen-
sation.

In recent years, iterative reconstruction algorithms have been im-
proved by introducing new reconstruction algorithms such as point-
spread-function modeling (PSF) and incorporating time-of-flight (TOF)
information. PET images reconstructed with PSF modeling and/or TOF
result in improved PET-based quantification and can increase the SNR
and contrast for lesions [24–26]. Merlin et al [27] reported significantly
improved detection performance for lung lesions after PVEs compen-
sation using a deconvolution algorithm within the PSF reconstruction
process. Recent studies also reported that PSF modelling and/or TOF-
based reconstructions improved image quality as well as lesion de-
tectability, in particular in small lesions [28–30]. Rogasch et al [31]
have shown in a clinical study of 28 liver metastases that quantitative
evaluation can be influenced when using either PSF or TOF protocols
for radiotherapy or follow-up purposes in different tumour-to-back-
ground ratios.

However, very few studies have investigated the simultaneous
compensation of respiratory motion and PVEs [20–23]. More im-
portantly, as we know, there have been no studies on the impact of
combined compensation of respiratory motion and PVEs in conjunction
with iterative reconstruction algorithms on quantification. Therefore,
the first objective of this study was to propose an image-based decon-
volution method that incorporated wavelet-based denoising for joint
compensation of respiratory motion and PVEs in image space. The
second main objective of this study was to quantitatively evaluate the
variability in quantification performance when the combined com-
pensation of respiratory motion and PVEs was used with different
iterative reconstruction algorithms for different SBRs.

2. Material and methods

2.1. Phantom studies

We utilized the National Electrical Manufacturers Association
(NEMA) body phantom with six spheres of diameters 10, 13, 17, 22, 28,
and 37mm. Three spheres of the phantom (10, 17 and 28mm diameter)
were filled with 18F-FDG solution, using a signal-to-background (SBR)
of 4:1 and 8:1, whereas the other spheres (13, 22 and 37mm) were
filled with water. The background activity level of 4.78 kBq/mL was
used in our phantom study. In order to simulate respiratory motion
using NEMA phantom, we utilized a dynamic in-house platform that
was designed to move phantom with sinusoidal motion profiles in the
axial and lateral direction. First, the phantom was placed on the plat-
form and scanned without any motion, yielding a static image. Next, in
order to obtain an image with motion effect, the platform was moved
along the longitudinal axis of the scanner with uniform velocity and 5

sec cycle. The peak-to-peak amplitudes were 20 and 26mm for 4:1 and
8:1 SBRs, respectively.

2.2. Patients study

In this study, FDG-PET/CT images of 10 patients (3 females; 7
males; mean body mass index: 25.8 ± 2.6 kg/m2) with non-small cell
lung cancer (NSCLC) were retrospectively evaluated. The analysis was
performed with 42 lesions ≤30mm in diameter. All patients fasted for
at least 6 h before PET/CT imaging. The PET/CT scan was acquired
60.8 ± 1.5min after 18F-FDG injection. The administered activity of
18F-FDG was 331.4 ± 71.0MBq in conformity with the European
Association of Nuclear Medicine guidelines [32].

2.3. Data acquisition and image reconstruction

Data were acquired with Discovery 690 PET/CT (GE Healthcare,
Milwaukee, Wisconsin, USA). All data were reconstructed with various
reconstruction algorithms: (1) OSEM-basic= ordered subset expecta-
tion maximization (OSEM) with no PSF or TOF, (2) PSF=OSEM with
PSF only, (3), TOF=OSEM with TOF only and (4) TOFPSF=OSEM
with TOF and PSF. The reconstruction parameters for TOF algorithms
(e.g., TOF and TOFPSF) were 2 iterations and 18 subsets, and those for
non-TOF algorithms (e.g., OSEM-basic and PSF) were 3 iterations and
18 subsets. 10min scan time [27] was applied per bed position and the
image matrix for emission data was 256× 256 with 2.73mm pixel size.
CT imaging was performed for attenuation correction using 100 kVp,
80mA and 1 s rotation time with 3.75mm slice thickness.

2.4. Combined compensation for partial volume effects and respiratory
motion

We now describe our development of a post-reconstruction method
for combined compensation of respiratory motion and PVEs. Our
method is motivated by the approach suggested by Boussion et al. [19],
although that method was in the context of compensating PVEs and did
not model the effect of motion. The degraded PET image, denoted by I,
can be modeled as a convolution between the motion blurring kernel,
denoted by MBK, the point spread function of the PET system, denoted
by PSF, and the original tracer distribution, denoted by O [21], as
below:

= ⊗ ⊗ +I O PSF MBK N (1)

where N is an additive noise and the symbol ⊗ refers to the convolution
operation. It is clear that a deconvolution-based approach could be used
to restore the degraded PET image. In the first step, for the determi-
nation of the MBK, we used the method proposed by Xu et al. [33]. In
this method, the blur direction was identified by applying a derivative
operation on the blurry image and finding the maximum intensity value
of the first-order gradient image in all directions. The minimum of
maximum intensity values determined the blur direction. After that, the
blur extent was computed by applying a high-pass filter, computing
auto-correlation of all filtered image lines and averaging them. The
minimum value of the auto-correlation function yielded the value of
blur extent. The motion blur direction and extent identified using di-
rectional derivative and correlation analysis were used to estimate the
MBK.

In the next step, to compensate for PVEs, the system PSF was
modeled as a spatially varying Gaussian kernel. The full-width-at-half-
maximum (FWHM) of this Gaussian kernel was measured by imaging a
multiple line sources scan, which was embedded in air and positioned
at the various places in the PET field of view (FOV) and reconstructed
with OSEM-basic and TOF reconstruction algorithms. Finally, the esti-
mated MBK and PSF were applied into the post-reconstruction iterative
deconvolution process. The deconvolution was performed using the
iterative Lucy-Richardson (LR) algorithm. The LR algorithm can be
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described as:

= ⎡
⎣

⊗ ⎤
⎦

= ⊗

+
⊗O O PSF

PSF PSF MBK

n 1 n I
PSF O Total

T

Total

Total n

(2)

where n is the LR deconvolution iteration number, On and On+1 denote
the estimates of the output image at the n and (n+ 1) iteration, an-
dPSFTotal

T denotes the transpose of the PSFTotal.
The main challenge encountered by the iterative deconvolution

process is noise amplification. A common approach for noise compen-
sation is performing denoising during deconvolution. In this study, we
implemented a wavelet-based denoising scheme [19] as follows. A re-
sidual for the nth iteration, denoted by Rn and defined as

= − ⊗R I PSF On
Total

n, was first obtained for each iteration of the LR
deconvolution. Taking the notation regarding the residual into account,
Eq. (2) can be rewritten as:
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Next, 3D isotropic undecimated wavelet transform (IUWT) was
applied on the residual with a bicubic-spline filter, yielding a set of
wavelet coefficients that described the residual. In our work, the re-
sidual was decomposed for up to 3 levels. In the next step, wavelet
thresholding using the BlockShrink method [34] was applied to denoise
the data. In this method, the threshold value is estimated locally based
on the value of the neighbor wavelet coefficients. For this purpose, first,
the wavelet coefficients of each subband were divided into L× L
blocks, and then the optimal block size and threshold values were ob-
tained by minimizing Stein’s unbiased risk estimate (SURE). After the
denoising process, the inverse wavelet transform was applied to restore
the image [35].

Note that the proposed post-reconstruction method was only ap-
plied to images reconstructed with non-PSF algorithms (OSEM-basic
and TOF). For the images reconstructed using PSF algorithms (PSF and
TOFPSF), only the motion compensation aspect of the deconvolution
operation with denoising step was performed.

2.5. Assessment strategy

Image quality obtained using the various reconstruction algorithms
before and after compensation was quantified using the contrast re-
covery (CR), coefficient of variation (COV) and CNR. The contrast re-
covery for hot spheres was calculated as follows:

=
−

−
×CR

C /C 1
SB 1

100%,j bkg

ratio (4)

where Cj and Cbkg, are the mean value of the sphere and the background
volumes of interest (VOIs), respectively, and SBratio represents the ac-
tual SBR. For cold spheres, the contrast recovery was given by

= − ×CR (1 C /C ) 100%,cold j bkg (5)

The COV was calculated as below:

= ×COV
σ
C

100%,bkg

bkg (6)

where σbkg is the mean standard deviation (SD) of the intensity values
in the background VOI. We also calculated CNR as the ratio of the mean
value of a VOI that surrounded the tumor minus the mean value in the
background VOIs over the mean SD in the background VOIs, i.e.

=
−
σ

CNR
C C

,j bkg

bkg (7)

Note that VOIs were drawn based on the CT images.
In this study, we calculated the relative difference of all the metrics

for various reconstruction algorithms between both sets of images

(compensated vs uncompensated). Box and Whisker analysis was also
applied for comparison among the different reconstruction algorithms.
Additionally, inter-method differences were obtained for PSF and TOF
by comparing the corresponding PSF vs non-PSF algorithms (PSF vs
OSEM-basic; TOFPSF vs TOF) and corresponding TOF vs non-TOF al-
gorithms (TOF vs OSEM-basic; TOFPSF vs PSF), respectively. Statistical
analysis was performed using SPSS, version 19.0 (IBM Corp., Armonk,
New York, USA). Differences between images before and after com-
pensation using the proposed method were evaluated by paired t test
and Wilcoxon’s signed-rank test for the normal and non-normal dis-
tribution, respectively.

3. Results

3.1. Phantom data

The images processed with the proposed compensation method
(hereafter referred to as compensated images) were first compared with
the static images as well as images that were not processed using pro-
posed method (hereafter referred to as uncompensated images). We
emphasize again that the combined compensation was only applied to
images reconstructed with non-PSF algorithms (OSEM-basic and TOF).
For the images reconstructed using PSF algorithms (PSF and TOFPSF),
only motion compensation was performed.

To evaluate the impact of the denoising method and obtain the
optimum deconvolution iteration number, the LR deconvolution was
performed with and without BlockShrink denoising in the different
number of iterations. The results for the various iteration numbers of
the LR deconvolution are shown in Fig. 1. The higher iteration number
of deconvolution yields a higher COV but allows better contrast re-
covery. However, the use of wavelet-based denoising with post-de-
convolution led to a significant decline of the COV values compared to
without denoising in all reconstruction algorithms (paired t test; each
P < 0.05). For both SBRs and all spheres, applying five iterations in LR
deconvolution yielded a good balance between COV and contrast re-
covery. Therefore, we used five deconvolution iterations of the pro-
posed method. Due to the same conclusions, the plots for 4:1 SBR is not
shown.

Note that the blur extent were estimated as 19.2 and 25.1mm, and
the corresponding blur directions were −89° and 90° for 4:1 and 8:1
SBRs, respectively. The true values of blur extent and blur direction
were 20mm and±90° for 4:1 SBR, respectively, and 26mm and±90°
for 8:1 SBR.

Contrast recovery for static, uncompensated and compensated
images in hot spheres for SBR 8:1 is illustrated in Fig. 2. For all re-
construction algorithms, there was a significant increase in contrast
recovery for motion-only and combined compensated images compared
to the uncompensated images (paired t test; each P < 0.05). Further,
contrast recovery improvement was seen for the smallest hot sphere
with more intensity. The relative contrast recovery for 10mm sphere
diameter was increased by 61.5%, 78.6%, 66.6% and 71.9% for OSEM-
basic, PSF, TOF and TOFPSF with only motion compensation, respec-
tively, and 90.2% and 87.1% for combined compensation of OSEM-
basic and TOF.

Fig. 3 presents the results of the contrast recovery in cold spheres for
static, uncompensated and compensated images at SBR 8:1. In the
compensated images, all reconstruction algorithms provided a higher
contrast recovery compared to uncompensated images. Furthermore,
the relative contrast recovery for the smallest cold sphere was increased
by 16.0%, 26.9%, 18.0% and 25.7% for OSEM-basic, PSF, TOF and
TOFPSF with only motion compensation, respectively, and 28.8% and
29.4% for combined compensation of OSEM-basic and TOF. Note that
for both hot and cold spheres, the 4:1 ratio showed similar results (for
conciseness, these results not presented).

Table 1 reports the percentage increase of CNR in images re-
constructed using various algorithms and then compensated using the
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proposed method in comparison to uncompensated images. After
compensation, CNR enhancement was seen for all hot spheres with
more impact for smaller spheres. Furthermore, the mean CNR in all
spheres was increased by 48.4%, 41.9%, 43.9% and 40.5% for OSEM-
basic, PSF, TOF and TOFPSF, respectively, in comparison with the un-
compensated images for 4:1 SBR and 66.2%, 54.0%, 61.7% and 48.9%
for 8:1 SBR. Thus, for all the reconstruction algorithms and for both
SBRs, the mean CNR significantly improved after compensation was
performed (paired t test; each P < 0.05).

Table 2 shows the inter-method CNR differences (%) for PSF vs non-
PSF and TOF and non-TOF algorithms. It can be seen that, for 4:1 SBR
and smaller hot sphere, TOF yielded higher CNR compared to TOFPSF.
However, for larger hot spheres, TOFPSF yielded higher CNR than TOF.
Further, TOFPSF yielded higher CNR than TOF for all hot sphere in 8:1
SBRs. In both SBRs, PSF and TOF yielded higher CNR than OSEM-basic
for all hot spheres. TOFPSF also yielded higher CNR than PSF for all hot
sphere in both SBRs. Note that the mean inter-method CNR differences
were higher for all hot sphere in 8:1 SBR compared to 4:1 SBRs.

3.2. Patient data

For quantitative evaluation, all clinical datasets were reconstructed
with the various algorithms and then compensated only for motion or
both PVEs and motion, depending on the reconstruction algorithm.
Fig. 4 shows images from one male patient with a BMI of 23 kg/m2. The
motion amplitude was estimated as 3 pixels, and the corresponding blur
direction was 71°. The relative difference of the contrast recovery in
compensated images compared to the corresponding uncompensated
images was 32.9% and 35.7% for PSF and TOFPSF with only motion
compensation, respectively, and 36.6% and 37.5% for combined com-
pensation of OSEM-basic and TOF. In the compensated images, all re-
construction algorithms provided a significantly higher contrast re-
covery compared to uncompensated images (Wilcoxon’s signed-rank
test; each P < 0.05).

Fig. 5 shows box and whisker plots of the relative difference (%) of
the CNR in compensated images for various reconstruction algorithms
compared to uncompensated images in patients with 42 lesions ≤30 in
diameter. The median value was 46.5%, 42.4%, 49.1% and 45.7% for
OSEM-basic, PSF, TOF, and TOFPSF, respectively. The relative

Fig. 1. Phantom data. Performance of the compensation method for (a) OSEM-basic, (b) PSF, (c) TOF, (d) TOFPSF reconstructions using the different number of post-
deconvolution iterations for 3 hot spheres of the NEMA phantom in 8:1 ratio, with and without BlockShrink denoising method. Each point of the curves corresponds
to an iteration number (varying from 1 to 10 reconstruction iterations).
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difference (%) between the minimum and maximum of median value
was 13.6% when various reconstruction algorithms (OSEM-basic, PSF,
TOF and TOFPSF) were applied.

4. Discussion

In clinical PET imaging, deteriorations in image quality due to re-
spiratory motion and PVEs present major challenges. Further, given the
wide variety of iterative reconstruction algorithms, it is unclear what
the best combination of reconstruction and post-processing algorithm
is. To address these challenges, we assessed the application of post-
reconstruction LR deconvolution with BlockShrink denoising to com-
pensate for both PVEs and motion, in conjunction with four different
iterative reconstruction algorithms. Performance of the proposed
compensation method was assessed with NEMA phantom studies and
patient data.

Our phantom study demonstrated that incorporation of wavelet-
based denoising inside the LR deconvolution can significantly control
noise amplification due to the deconvolution process (Fig. 1). Another
observation is that motion-only or combined compensation improved

contrast recovery values for all reconstruction algorithms (Figs. 2 and
3). Some previous studies [19,27,33] have shown that using deconvo-
lution methods with denoising for either PVE compensation or motion
compensation can lead to higher CR with acceptable noise levels. Our
results show that using deconvolution method with denoising provides
improved COV and contrast recovery even for joint compensation tasks.

Moreover, our results show that, in uncompensated images, contrast
recovery decreased by decreasing sphere size, as would be expected due
to the motion. A decrease in the sphere size from 28 to 10mm in dia-
meter led to the CR decreasing by 70.5%, 70.6%, 68.2% and 70.7% for
OSEM-basic, PSF, TOF and TOFPSF, respectively, for 4:1 SBR and
59.2%, 59.7%, 54.7% and 56.3% for 8:1 SBR. In this regards, Siman
et al [36] mentioned that motion could decrease activity concentration
by 20–80% depending on tumor size and motion amplitude.

We also observed that higher CNR values were obtained for all
sphere and both SBRs in compensated images (Table 1). Previous stu-
dies have shown that using TOF algorithms can lead to improved
contrast-noise trade-off performance relative to non-TOF algorithms,
especially for small lesion [37,38]. Our results demonstrated that for
smaller sphere in compensated images, TOF and TOFPSF provided

Fig. 2. Phantom data. Comparison between the contrast recovery (%) in static, uncompensated and compensated images with 8:1 SBR in hot spheres for (a) OSEM-
basic, (b) PSF (c) TOF and (d) TOFPSF.
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higher CNR versus the corresponding non-TOF algorithms (Table 2).
The relative differences were lower for TOFPSF (TOFPSF vs PSF) re-
lative to TOF (TOF vs OSEM-basic). Overall, the TOFPSF algorithm
empirically yielded the highest improvements for all sphere sizes. Thus,
we infer that it is more helpful to perform PSF modeling while re-
construction instead of post-processing.

Retrospective quantitative analysis of clinical FDG PET/CT studies

on lymph node metastases by Akamatsu et al. [39] revealed notable
improvements when including PSF and TOF. On the basis of our clinical
findings, contrast recovery and CNR for compensated images with TOF
and TOFPSF were superior to another algorithm in non-PSF and PSF
algorithms, respectively. Although only the blurring effect of the

Fig. 3. Phantom data. Comparison between the contrast recovery (%) in static, uncompensated and compensated images with 8:1 SBR in cold spheres for (a) OSEM-
basic, (b) PSF (c) TOF and (d) TOFPSF.

Table 1
Phantom data. Increase (%) of the CNR for compensated images relative to the
uncompensated image in PSF algorithms with only motion compensation and
non-PSF algorithms with combined compensation for both 4: 1 and 8:1 SBRs.

OSEM-basic PSF TOF TOFPSF

4:1 ratio
Sphere 10mm 85.8 84.7 80.0 82.0
Sphere 17mm 43.3 32.1 37.5 31.1
Sphere 28mm 16.1 9.02 14.2 8.42

8:1 ratio
Sphere 10mm 98.1 93.1 96.9 82.9
Sphere 17mm 69.7 49.9 62.1 45.9
Sphere 28mm 30.9 19.0 26.0 17.9

Table 2
Phantom data. Relative CNR differences (%) for compensated images.
Comparison of PSF vs non-PSF (left) as well as TOF vs non-TOF algorithms
(right).

PSF vs
OSEM-
basic

TOFPSF vs
TOF

TOF vs
OSEM-
basic

TOFPSF vs
PSF

4:1 ratio
Sphere 10mm 5.49 −5.68 16.4 6.56
Sphere 17mm 14.0 11.6 10.2 7.71
Sphere 28mm 13.4 12.0 9.83 8.39

8:1 ratio
Sphere 10mm 9.27 4.31 17.1 12.5
Sphere 17mm 9.30 9.05 9.50 9.25
Sphere 28mm 7.53 8.27 8.39 9.12
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patient motion can be compensated with our proposed method, actually
our results showed that TOF algorithms can lead to lowering of another
specific artefact, namely the banana-shaped artefact, which is one of the
most common artefacts induced by the patient motion due to the
changing photon attenuation inside the patient [40,41].This is con-
sistent with other studies showing the TOF localizes the error

propagation and reduces certain image artefacts [42]. Moreover, in
conformity with previous studies [43–46], we found that in compen-
sated images, switching from non-TOF to TOF modelling led to im-
proved quantitative accuracy.

The present work highlights the effect of the choice of the PET re-
construction algorithm on quantitative accuracy in the compensated

OSEM-basic PSF TOF TOFPSF

Contrast = 37.5%Contrast= 36.6% Contrast = 32.9% Contrast = 35.7%

Fig. 4. Patient data. Coronal PET images of a 42-year-old man with NSCLC; First row: before proposed compensation method, second row: after proposed com-
pensation method.

Fig. 5. Patient data. Box plots of relative differences (%) of the CNR in compensated images compared with the uncompensated images in patients with 42 lesions
≤30 in diameter for various reconstruction algorithms.
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images. Overall, we found that quantitative parameters were affected
by the choice of the reconstruction algorithms, lesion size and SBRs,
and these effects increased with decreasing lesion sizes and SBRs. For
example, the small spheres had a large relative difference in CR and
CNR with various reconstruction algorithms. These findings suggest
that reconstruction algorithms need to be chosen carefully when ap-
plying compensation methods.

There are some limitations to our study. Although we used different
SBRs in phantom studies, we only considered fixed background activity.
The number of retrospective patients was the other limitation in the
present study. Furthermore, we analyzed all lesions without classifica-
tion of the lesions into size groups, signal to background ratio and BMI,
especially for heavy and obese patients. Another limitation is that with
patient data, we did not know the ground truth CNR and other metric
values. In this context, no-gold-standard techniques have been devel-
oped that can be used to assess the performance of different imaging
methods on quantification tasks without ground truth [47–50]. The
development and use of such techniques for assessing compensation
methods with patient data is another area of future research.

5. Conclusion

We proposed and rigorously evaluated an image-based deconvolu-
tion method that incorporated wavelet-based denoising for combined
compensation of respiratory motion and partial volume effects (PVEs)
in oncologic PET images. The study demonstrates that the proposed
method, and in particular, incorporation of a denoising method, can
improve PET quantification performance. Our results provide evidence
that quantitation is dependent on the choice of the reconstruction al-
gorithm, especially when the signal support is small. The use of the
proposed method can provide improved images reconstructed using
OSEM-basic and TOF while only the respiratory compensation should
be considered when applying TOFPSF. Overall, the choice of the com-
bination of reconstruction algorithm and compensation method need to
be determined carefully.
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